如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點(diǎn)O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC.

【答案】分析:(1)連接AO,利用等腰三角形的對稱性即可求得∠OAC的度數(shù);
(2)利用三角形的內(nèi)角和定理以及角平分線的定義求∠BOC與∠A的關(guān)系,再把∠A代入即可求∠BOC的度數(shù).
解答:解:(1)連接AO,
∵在等腰△ABC中,∠B和∠C的平分線相交于點(diǎn)O,
∴等腰△ABC關(guān)于線段AO所在的直線對稱,
∵∠A=80°,
∴∠OAC=40°

(2)∵BO、CO分別平分∠ABC和∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-( ∠ABC+∠ACB)
=180°-(∠ABC+∠ACB)
=180°-(180°-∠A)
=90°+∠A.
∴當(dāng)∠A=80°時,
=130°.
點(diǎn)評:本題考查了等腰三角形的性質(zhì),也可以作輔助線,構(gòu)造三角形的外角,利用三角形外角的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關(guān)系式為( 。
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點(diǎn)D,交另一腰AC于點(diǎn)E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點(diǎn),連接AM,DM.
(1)在圖中畫出△DEM關(guān)于點(diǎn)M成中心對稱的圖形;
(2)求證AM⊥DM;
(3)當(dāng)α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點(diǎn).若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

同步練習(xí)冊答案