如圖,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于點(diǎn)G,DE⊥AB于E,DF⊥AC于F.
證明:BE=CF;(提示:連接線段BD、CD)
分析:連接BD、CD,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=DF,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得BD=CD,然后利用“HL”證明Rt△BED與Rt△CFD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證.
解答:證明:連接BD,CD,
∵AD平分∠BAC,且DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED與Rt△CFD中,
BD=CD
DE=DF
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF.
點(diǎn)評(píng):本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),全等三角形的判定與性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案