如圖,點(diǎn)軸正半軸上一點(diǎn),兩點(diǎn)關(guān)于軸對(duì)稱,過點(diǎn)任作直線交拋物線兩點(diǎn)

(1)求證:∠=∠;
(2)若點(diǎn)的坐標(biāo)為(0,1),且∠=60º,試求所有滿足條件的直線的函數(shù)解析式.

解:(1)如圖,分別過點(diǎn)軸的垂線,垂足分別為.

設(shè)點(diǎn)的坐標(biāo)為(0,),則點(diǎn)的坐標(biāo)為(0,-).
設(shè)直線的函數(shù)解析式為,并設(shè)的坐標(biāo)分別為 ,.由

(第13題)

 
得                         ,

于是       ,即.
于是    
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f9/7/1s6im3.gif" style="vertical-align:middle;" />,所以.
因?yàn)椤?img src="http://thumb.1010pic.com/pic5/tikupic/b6/7/y8cjh.gif" style="vertical-align:middle;" />∠,所以△∽△
故∠=∠.
(2) 設(shè),,不妨設(shè)>0,由(1)可知
=∠,=,=,  
所以             =,=.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/e8/3/pc2za2.gif" style="vertical-align:middle;" />∥,所以△∽△.
于是,即,
所以
由(1)中,即,所以
于是可求得 
代入,得到點(diǎn)的坐標(biāo)().
再將點(diǎn)的坐標(biāo)代入,求得 
所以直線的函數(shù)解析式為.
根據(jù)對(duì)稱性知,所求直線的函數(shù)解析式為,或.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)軸正半軸上一點(diǎn),兩點(diǎn)關(guān)于軸對(duì)稱,過點(diǎn)任作直線交拋物線,兩點(diǎn).

(Ⅰ)求證:∠=∠

(Ⅱ)若點(diǎn)的坐標(biāo)為(0,1),且∠=60º,試求所有滿足條件的直線的函數(shù)解析式.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)軸正半軸上一點(diǎn),兩點(diǎn)關(guān)于軸對(duì)稱,過點(diǎn)任作直線交拋物線兩點(diǎn)

(1)求證:∠=∠;

(2)若點(diǎn)的坐標(biāo)為(0,1),且∠=60º,試求所有滿足條件的直線的函數(shù)解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)軸正半軸上一點(diǎn),兩點(diǎn)關(guān)于軸對(duì)稱,過點(diǎn)任作直線交拋物線,兩點(diǎn)

(1)求證:∠=∠;
(2)若點(diǎn)的坐標(biāo)為(0,1),且∠=60º,試求所有滿足條件的直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年全國(guó)初中數(shù)學(xué)競(jìng)賽題 題型:解答題

如圖,點(diǎn)軸正半軸上一點(diǎn),兩點(diǎn)關(guān)于軸對(duì)稱,過點(diǎn)任作直線交拋物線,兩點(diǎn)

(1)求證:∠=∠

(2)若點(diǎn)的坐標(biāo)為(0,1),且∠=60º,試求所有滿足條件的直線的函數(shù)解析式.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案