如圖表示某加工廠今年前5個月每月生產(chǎn)某種產(chǎn)品的產(chǎn)量c(件)與時間t(月)之間的關系,則對這種產(chǎn)品來說,該廠(    )
A.1月至3月每月產(chǎn)量逐月增加,4、5兩月產(chǎn)量逐月減小
B.1月至3月每月產(chǎn)量逐月增加,4、5兩月產(chǎn)量與3月持平
C.1月至3月每月產(chǎn)量逐月增加,4、5兩月產(chǎn)量均停止生產(chǎn)
D.1月至3月每月產(chǎn)量不變, 4、5兩月均停止生產(chǎn)
B

試題分析:仔細分析函數(shù)圖象的特征,根據(jù)c隨t的變化規(guī)律即可求出答案.
解:由圖中可以看出,函數(shù)圖象在1月至3月,圖象由低到高,說明隨著月份的增加,產(chǎn)量不斷提高,從3月份開始,函數(shù)圖象的高度不再變化,說明產(chǎn)量不再變化,和3月份是持平的.
故選B.
點評:此類問題是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線關于直線對稱,與坐標軸交于A、B、C三點,且AB=4,點D在拋物線上,直線是一次函數(shù)的圖象,點O是坐標原點.

(1)求拋物線的解析式;
(2)若直線平分四邊形OBDC的面積,求k的值.
(3)把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線與直線交于M、N兩點,問在y軸正半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關于y軸對稱?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某校家長委員會計劃在九年級畢業(yè)生中實施“讀萬卷書,行萬里路,了解赤峰,熱愛家鄉(xiāng)”主題活動,決定組織部分畢業(yè)生代表走遍赤峰全市12個旗、縣、區(qū)考察我市創(chuàng)建文明城市成果,遠航旅行社對學生實行九折優(yōu)惠,吉祥旅行社對20人以內(nèi)(含20人)學生旅行團不優(yōu)惠,超過20人超出的部分每人按八折優(yōu)惠.兩家旅行社報價都是2000元/人.服務項目、旅行路線相同.請你幫助家長委員會策劃一下怎樣選擇旅行社更省錢.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我市某商場有甲、乙兩種商品,甲種每件進價15元,售價20元;乙種每件進價35元,售價45元.
(1)若商家同時購進甲、乙兩種商品100件,設甲商品購進x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關系式.
(2)該商家計劃最多投入3000元用于購進此兩種商品共100件,則至少要購進多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五•一”期間,商家對甲、乙兩種商品進行表中的優(yōu)惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?
打折前一次性購物總金額
優(yōu)惠措施
不超過400元
售價打九折
超過400元
售價打八折

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,點A的坐標為(0,3),△OAB沿x軸向右平移后得到△O′A′B′,點A的對應點在直線上一點,則點B與其對應點B′間的距離為
A.B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一次函數(shù)y=﹣x+1與x軸,y軸所圍成的三角形的面積是  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如表所示:
類型 價格
進價(元/盞)
售價(元/盞)
A型
30
45
B型
50
70
(1)若商場預計進貨款為3500元,則這兩種臺燈各購進多少盞?
(2)若商場規(guī)定B型臺燈的進貨數(shù)量不超過A型臺燈數(shù)量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

水果店王阿姨到水果批發(fā)市場打算購進一種水果銷售,經(jīng)過還價,實際價格每千克比原來少2元,發(fā)現(xiàn)原來買這種80千克的錢,現(xiàn)在可買88千克。
(1)現(xiàn)在實際這種每千克多少元?
(2)準備這種,若這種的量y(千克)與單價x(元/千克)滿足如圖所示的一次函數(shù)關系。

①求y與x之間的函數(shù)關系式;
②請你幫拿個主意,將這種的單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=收入-進貨金額)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

直線y=-x+b與雙曲線y=-(x<0)交于點A,與x軸交于點B,則OA2-OB2=  

查看答案和解析>>

同步練習冊答案