如圖,OA是⊙O的半徑,弦BC⊥OA,若∠ABC=20°,則∠AOB的度數(shù)是( )

A.60°
B.55°
C.50°
D.40°
【答案】分析:本題關(guān)鍵是理清弧的關(guān)系,找出等弧,則可根據(jù)“同圓中等弧對等角”求解.
解答:解:由垂徑定理,得:=;
∴∠AOB=2∠ABC=40°;
故選D.
點(diǎn)評:本題綜合考查了垂徑定理和圓周角的求法及性質(zhì).解答這類題一些學(xué)生不會綜合運(yùn)用所學(xué)知識解答問題,不知從何處入手造成錯(cuò)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•汕頭模擬)如圖,直角梯形OABC的一頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點(diǎn),且始終保持∠DEF=45°.

(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)△AEF是等腰三角形時(shí),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA、OC是方程
2
x
=
9-x
10
的兩個(gè)根(OA>OC),在AB邊上取一點(diǎn)D,將紙片沿CD翻折,使點(diǎn)B恰好落在OA邊上的點(diǎn)E處.
(1)求OA、OC的長;
(2)求D、E兩點(diǎn)的坐標(biāo);
(3)若線段CE上有一動點(diǎn)P自C點(diǎn)沿CE方向向E點(diǎn)勻速運(yùn)動(點(diǎn)P運(yùn)動到點(diǎn)E后停止運(yùn)動),運(yùn)動的速度為每秒1個(gè)單位長度,設(shè)運(yùn)動的時(shí)間為t秒,過P點(diǎn)作ED的平行線交CD于點(diǎn)M.是否存在這樣的t 值,使以C、E、M為頂點(diǎn)的三角形為等腰三角形?若存在,請直接寫出t值及相應(yīng)的時(shí)刻點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)是坐標(biāo)原點(diǎn),邊OA,OC分別在X軸,y軸的正半軸上.OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩個(gè)動點(diǎn),且始終保持∠DEF=45°,如果△AEF是等腰三角形時(shí).將△AEF沿EF對折得△A′EF與五邊形OEFBC重疊部分的面積為
17
8
或1或
41
2
-48
4
17
8
或1或
41
2
-48
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處.
(1)求過E點(diǎn)的反比例函數(shù)解析式.
(2)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上.OA∥BC,OA=4
2
,OC=
3
2
2
,
∠OAB=45°,D是BC上一點(diǎn),CD=
3
2
2
.E、F分別是線段OA、AB上的兩動點(diǎn),且始終保持∠DEF=45°,設(shè)OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 

(2)證明△ODE∽△AEF,并確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)AF=EF時(shí),將△AEF沿EF折疊,得到△A′EF,求△A′EF與五邊形OEFBC重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案