如圖,EF過矩形ABCD對(duì)角線的交點(diǎn)O,且分別交AB、CD于E、F,那么陰影部分的面積是矩形ABCD的面積的( )

A.
B.
C.
D.
【答案】分析:本題主要根據(jù)矩形的性質(zhì),得△EBO≌△FDO,再由△AOB與△OBC同底等高,△AOB與△ABC同底且△AOB的高是△ABC高的得出結(jié)論.
解答:解:∵四邊形為矩形,
∴OB=OD=OA=OC,
在△EBO與△FDO中,∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,△EBO≌△FDO,
∴陰影部分的面積=S△AEO+S△EBO=S△AOB,
∵△AOB與△ABC同底且△AOB的高是△ABC高的,
∴S△AOB=S△OBC=S矩形ABCD
故選B.
點(diǎn)評(píng):本題考查矩形的性質(zhì),矩形具有平行四邊形的性質(zhì),又具有自己的特性,要注意運(yùn)用矩形具備而一般平行四邊形不具備的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,EF過矩形ABCD對(duì)角線的交點(diǎn)O,且分別交AB、CD于E、F,那么陰影部分的面積是矩形ABCD的面積的( 。
A、
1
5
B、
1
4
C、
1
3
D、
3
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,EF過矩形ABCD對(duì)角線的交點(diǎn)O,且分別交AD、BC于點(diǎn)E、F已知AB=3,BC=4,則圖中陰影部分的面積是(  )
A、3B、4C、6D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•歷城區(qū)一模)如圖,EF過矩形ABCD對(duì)角線的交點(diǎn)O,且分別交AB、CD于E、F,矩形ABCD內(nèi)的一個(gè)動(dòng)點(diǎn)P落在陰影部分的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省濟(jì)南市歷城中考一模數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖,EF過矩形ABCD對(duì)角線的交點(diǎn)O,且分別交AB、CD于E、F,矩形ABCD內(nèi)的一個(gè)動(dòng)點(diǎn)P落在陰影部分的概率是(  )

A.        B.          C.         D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省新鄉(xiāng)市中考模擬數(shù)學(xué)卷 題型:填空題

如圖,EF過矩形ABCD對(duì)角線的交點(diǎn)O,且分別交AB、CD于E、F,那么陰影部分的面積是矩形ABCD的面積的________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案