【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點P在AB,CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點P移到AB,CD外部,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論.
(3)如圖3,寫出∠BPD,∠B,∠D,∠BQD之間的數(shù)量關(guān)系?(不需證明)
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
【答案】
(1)解:過點P作PE∥AB,
∵AB∥CD,
∴AB∥EP∥CD,
∴∠B=∠1=50°,∠D=∠2=30°,
∴∠BPD=80°
(2)解:∠B=∠BPD+∠D.
理由如下:設(shè)BP與CD相交于點O,
∵AB∥CD,
∴∠BOD=∠B,
在△POD中,∠BOD=∠BPD+∠D,
∴∠B=∠BPD+∠D
(3)解:如圖,連接QP并延長,
結(jié)論:∠BPD=∠BQD+∠B+∠D
(4)解:如圖,由三角形的外角性質(zhì),∠A+∠E=∠1,∠B+∠F=∠2,
∵∠1+∠2+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
【解析】(1)過點P作PE∥AB,根據(jù)兩直線平行,內(nèi)錯角相等可得∠B=∠1,∠D=∠2,再根據(jù)∠BPD=∠1+∠2代入數(shù)據(jù)計算即可得解;(2)根據(jù)根據(jù)兩直線平行,內(nèi)錯角相等可得∠BOD=∠B,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式整理即可得解;(3)連接QP并延長,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和解答;(4)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠A+∠E=∠1,∠B+∠F=∠2,再根據(jù)四邊形的內(nèi)角和定理列式計算即可得解.
【考點精析】認真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補),還要掌握三角形的內(nèi)角和外角(三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個. 1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)已知4m=a,8n=b,用含a,b的式子表示下列代數(shù)式: ①求:22m+3n的值
②求:24m﹣6n的值
(2)已知2×8x×16=223 , 求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點F是點E關(guān)于AB的對稱點,連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點B順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把拋物線y=-x2+2的圖象繞原點旋轉(zhuǎn)180°,所得的拋物線的函數(shù)關(guān)系是( )
A. y=x2+2B. y=-x2+2C. y=-x2-2D. y=x2-2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解方程x2﹣2x﹣2=0,原方程應(yīng)變形為( )
A. (x+1)2=3B. (x﹣1)2=3C. (x+1)2=1D. (x﹣1)2=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com