當(dāng)
x=-,y=2時,求下列代數(shù)式的值:(1)4x2-y3+3;
(2).
科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析數(shù)學(xué)八年級上(配課標(biāo)北師大版) 課標(biāo)北師大版 題型:022
在代數(shù)式ax+by中,當(dāng)x=2,y=-3時,其值為5;當(dāng)x=-1,y=2時,其值為.則當(dāng)x=1,y=6時,代數(shù)式ax+by的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點一測叢書 八年級數(shù)學(xué) 下 (江蘇版課標(biāo)本) 江蘇版 題型:044
一般地,如果函數(shù)y=f(x)對于自變量取值范圍內(nèi)的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函數(shù);如果函數(shù)y=f(x)對于自變量取值范圍內(nèi)的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函數(shù).
例如:f(x)=x3+x.
當(dāng)x取任意實數(shù),
f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)
即f(-x)=-f(x)
所以f(x)=x3+x為奇函數(shù).
又如:f(x)=|x|,
當(dāng)x取任意實數(shù)時,f(-x)=|-x|=|x|=f(x),
即f(-x)=f(x)
所以f(x)為偶函數(shù).
問題:(1)下列函數(shù):
①y=x4;②y=x2+1;③y=;④y=;⑤y=x+.
所有奇函數(shù)是________,所有偶函數(shù)是________(只填序號);
(2)請你再分別寫出一個奇函數(shù),一個偶函數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:湖北省鄂州市2011年中考數(shù)學(xué)試題 題型:解答題
數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn= °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣東河源卷)數(shù)學(xué) 題型:解答題
如圖,D是△ABC的邊BC的中點,過AD延長線上的點E作AD的垂線EF,E為垂足,EF與AB的延長線相交于點F,點O在AD上,AO=CO,BC∥EF.
(1)證明:AB=AC;
(2)證明:點O是△ABC的外接圓的圓心;
(3)當(dāng)AB=5,BC=6時,連接BE,若∠ABE=90°,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com