令x△y=數(shù)學(xué)公式,且1△2=1,2△3=3,那么,2△(-1)=________.


分析:讀懂題意,總結(jié)出新運(yùn)算的新規(guī)則,并根據(jù)新規(guī)則得出關(guān)于a、b的兩個(gè)方程,解方程即可求得a、b的值,代入x△y=,從而得出新規(guī)則,套用規(guī)則解答即可.
解答:∵1△2==1,2△3==3,
∴b=4,a=-4,
∴2△(-1)=
點(diǎn)評(píng):此題是定義新運(yùn)算題型.讀懂新運(yùn)算規(guī)則,是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

使得函數(shù)值為零的自變量的值稱(chēng)為函數(shù)的零點(diǎn).例如,對(duì)于函數(shù)y=x-1,令y=0,可得x=1,我們就說(shuō)1是函數(shù)y=x-1的零點(diǎn).
己知函數(shù)y=x2-2mx-2(m+3)(m為常數(shù)).
(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn);
(2)證明:無(wú)論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);
(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為x1和x2,且
1
x1
+
1
x2
=-
1
4
,此時(shí)函數(shù)圖象與x軸的交點(diǎn)分別為A、B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線y=x-10上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平面直角坐標(biāo)系中,拋物線y=ax2-x+3(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱(chēng)軸為直線x=-2.
(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:
探究一:如圖1,設(shè)△PAD的面積為S,令W=t•S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒(méi)有,說(shuō)明理由;
探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.(參考資料:拋物線y=ax2+bx+c(a≠0)對(duì)稱(chēng)軸是直線x=-
b2a

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•岳陽(yáng))已知:如圖,直線MN和⊙O切于點(diǎn)C,AB是⊙O的直徑,AE⊥MN,BF⊥MN且與⊙O交于點(diǎn)G,垂足分別是E、F,AC是⊙O的弦,
(1)求證:AB=AE+BF;
(2)令A(yù)E=m,EF=n,BF=p,證明:n2=4mp;
(3)設(shè)⊙O的半徑為5,AC=6,求以AE、BF的長(zhǎng)為根的一元二次方程;
(4)將直線MN向上平行移動(dòng)至與⊙O相交時(shí),m、n、p之間有什么關(guān)系?向下平行移動(dòng)至與⊙O相離時(shí),m、n、p之間又有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀以下的例題求解:例:已知x>0,求函數(shù)y=x+
4
x
的最小值.
解:令a=x,b=
4
x
,則有a+b≥2
ab
,得y=x+
4
x
≥2
4
x
=4,當(dāng)且僅當(dāng)x=
4
x
時(shí),即x=2時(shí),函數(shù)有最小值,最小值為4.
根據(jù)上面回答下列問(wèn)題:
①已知x>0,則當(dāng)x=
6
2
6
2
時(shí),函數(shù)y=2x+
3
x
取到最小值,最小值為
2
6
2
6
;
②用籬笆圍一個(gè)面積為100m2的矩形花園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長(zhǎng)是多少?
③已知x>0,則自變量x取何值時(shí),函數(shù)y=
x
x2-2x+9
取到最大值,最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案