在矩形ABCD中,已知兩鄰邊AD=12,AB=5,P是AD邊上異于A和D的任意一點,且PE⊥BD,PF⊥AC,E、F分別是垂足,那么PE+PF=________.


分析:首先過A作AG⊥BD于G.根據(jù)等腰三角形底邊上的任意一點到兩腰距離的和等于腰上的高,則PE+PF=AG.利用勾股定理求得BD的長,再根據(jù)三角形的面積計算公式求得AG的長,即為PE+PF的長.
解答:解:如圖,過A作AG⊥BD于G,
則S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),
∵S△AOD=S△AOP+S△POD,
∴PE+PF=AG,
∵AD=12,AB=5,
∴BD==13,


故答案為:
點評:本題考查矩形的性質、等腰三角形的性質、三角形的面積計算.解決本題的關鍵是明白等腰三角形底邊上的任意一點到兩腰距離的和等于腰上的高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在矩形ABCD中,已知E是BC的中點,∠BAE=30°,AE=2,則AC=( 。
A、3
B、2
3
C、
7
D、
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在矩形ABCD中,已知AB=a,BC=b,P是邊CD上異于點C、D的任意一點.
(1)若a=2b,當點P在什么位置時,△APB與△BCP相似?(不必證明)
(2)若a≠2b,①判斷以AB為直徑的圓與直線CD的位置關系,并說明理由;②是否存在點P,使以A、B、P為頂點的三角形與以A、D、P為頂點的三角形相似?(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2,BC=3,點E為AD邊上一動點(不與A、D重合),連接CE,作EF⊥CE交AB邊于F
(1)求證:△AEF∽△DCE;
(2)當△ECF∽△AEF時,求AF的長;
(3)在點E的運動過程中,AD邊上是否存在異于點E的點G,使△AGF∽△DCG成立?若存在,請猜想點G的位置,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,已知AD=15,AB=8,P是AD邊上任意一點,PE⊥BD,PF⊥AC,E,F(xiàn)分別是垂足,那么PE+PF=
120
17
120
17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,已知AB=1,BC=2,∠ABC的平分線交AD于點F,E為BC的中點,連接EF.
(1)求BF的長度;
(2)求證:四邊形ABEF是正方形;
(3)設點P是線段BF上的一個動點,點N是矩形ABCD的對稱中心,是否存在點P,使∠APN=90°?若存在,請直接寫出BP的長度;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案