已知點(diǎn)都在拋物線上,x1、x2、x3ABC的三邊,且x1﹤x2﹤x3,若對(duì)所有的正整數(shù)x1、x2、x3都滿足y1﹤y2﹤y3,則b的取值范圍是
[     ]
A.b﹥-2
B.b﹥-3
C.b﹥-4
D.b﹥-5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系內(nèi),已知等腰梯形ABCD,AD∥BC∥x軸,AB=CD,AD=2,BC=8,AB=5,B點(diǎn)的坐標(biāo)是(-1,5).
(1)直接寫出下列各點(diǎn)坐標(biāo).A(,)C(,)D(,);
(2)等腰梯形ABCD繞直線BC旋轉(zhuǎn)一周形成的幾何體的表面積(保留π);
(3)直接寫出拋物線y=x2左右平移后,經(jīng)過(guò)點(diǎn)A的函數(shù)關(guān)系式;
(4)若拋物線y=x2可以上下左右平移后,能否使得A,B,C,D四點(diǎn)都在拋物線上?若能,請(qǐng)說(shuō)理由;若不能,將“拋物線y=x2”改為“拋物線y=mx2”,試確定m的值,使得拋物線y=mx2經(jīng)過(guò)上下左右平移后能同時(shí)經(jīng)過(guò)A,B,C,D四點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=(m-1)x2+4x+m2-1的圖象經(jīng)過(guò)原點(diǎn).
(1)請(qǐng)求出m的值及圖象與x軸的另一交點(diǎn)的坐標(biāo);
(2)若把(1)中求得的函數(shù)的圖象沿其對(duì)稱軸上下平行移動(dòng),使頂點(diǎn)移到直線y=
12
x
上,請(qǐng)求出此時(shí)函數(shù)的解析式;
(3)若在(1)中求得的函數(shù)的圖象上,已知有一點(diǎn)E在x軸上,點(diǎn)F在拋物線上,且點(diǎn)E和點(diǎn)F的橫坐標(biāo)都為-2,能否在拋物線的對(duì)稱軸上找一點(diǎn)P,使得PE+PF最短?若能,請(qǐng)求出這個(gè)最短距離;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形OABC,點(diǎn)P在邊OA上(不與端點(diǎn)重合),點(diǎn)Q在邊CO上(不與端點(diǎn)重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請(qǐng)寫出表示這三個(gè)三角形相似的式子,并探究此時(shí)線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請(qǐng)重新寫出表示這三個(gè)三角形相似的式子,并證明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標(biāo)系,如圖(3),若某拋物線頂點(diǎn)為P,點(diǎn)B在拋物線上.
①求此拋物線的解析式.
②過(guò)線段BP上一動(dòng)點(diǎn)M(點(diǎn)M與點(diǎn)P、B不重合),作y軸的平行線交拋物線于點(diǎn)N,若記點(diǎn)M的橫坐標(biāo)為m,試求線段MN的長(zhǎng)L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時(shí),L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江樂(lè)清育英學(xué)校五校九年級(jí)12月聯(lián)考B班數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線過(guò)兩點(diǎn)(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點(diǎn)為(1,d).

(1)求拋物線與雙曲線的解析式;

(2)已知點(diǎn)都在雙曲線(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點(diǎn),記,點(diǎn)Q在雙曲線(x<0)上,過(guò)Q作QM⊥y軸于M,記。

的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案