如圖,已知△ABC和△CDE都是等邊三角形,問:線段AE、BD的長度有什么關系?請說明理由.

解:AE=BD.
∵△ABC是等邊三角形,(已知)
∴AC=BC,∠ACB=60°.(等邊三角形性質(zhì))
∵△CDE是等邊三角形,(已知)
∴CD=CE,∠DCE=60°.(等邊三角形性質(zhì))
∴∠ACB=∠DCE.(等量代換)
∴∠ACB+∠ACD=∠DCE+∠ACD.(等式性質(zhì))
即∠BCD=∠ACE.
在△ACE和△BCD中,
,
∴△ACE≌△BCD.(SAS)
∴AE=BD.(全等三角形對應邊相等)
分析:由△ABC和△CDE都是等邊三角形,易得AB=BC,CD=CE,∠ACB=∠DCE=60°,即可得∠BCD=∠ACE,根據(jù)SAS即可證得△ACE≌△BCD,則可得AE=BD.
點評:此題考查了全等三角形的判定與性質(zhì)與等邊三角形的性質(zhì).此題難度不大,注意數(shù)形結(jié)合思想的應用是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,已知△ABC和△DEF,∠A=∠D=90°,且△ABC與△DEF不相似,問是否存在某種直線分割,使△ABC所分割成的兩個三角形與△DEF所分割成的兩個三角形分別對應相似?
(1)如果存在,請你設計出分割方案,并給出證明;如果不存在,請簡要說明理由;
(2)這樣的分割是唯一的嗎?若還有,請再設計出一種.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC和△DEF是兩個邊長都為10cm的等邊三角形,且B、D、C、E都在同一直線上精英家教網(wǎng),連接AD、CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運動,設△ABC運動時間為t秒,
①當t為何值時,?ADFC是菱形?請說明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,已知△ABC和△A″B″C″及點O.
(1)畫出△ABC關于點O對稱的△A′B′C′;
(2)若△A″B″C″與△A′B′C′關于點O′對稱,請確定點O′的位置;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,已知△ABC和兩條相交于O點且夾角為60°的直線m、n.
(1)畫出△ABC關于直線m的對稱△A1B1C 1,再畫出△A1B1C 1關于直線n的對稱△A2B2C 2
(2)你認為△A2B2C 2可視為△ABC繞著哪一點旋轉(zhuǎn)多少度得到的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南崗區(qū)二模)如圖,已知△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,求證:AD=CE.

查看答案和解析>>

同步練習冊答案