【題目】如圖,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=4 cm,則EF+CF的長(zhǎng)為cm.

【答案】5
【解析】解:∵AE平分∠BAD, ∴∠DAE=∠BAE;
又∵AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6cm,
∴EC=9﹣6=3(cm),
∵BG⊥AE,垂足為G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4 cm,
∴AG= =2(cm),
∴AE=2AG=4cm;
∵EC∥AD,
= = = = ,
= , =
解得:EF=2(cm),F(xiàn)C=3(cm),
∴EF+CF的長(zhǎng)為5cm.
所以答案是:5.

【考點(diǎn)精析】本題主要考查了勾股定理的概念和平行四邊形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=kx+b與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,m),與x軸交于點(diǎn)B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點(diǎn)M,與x軸交于點(diǎn)N,連接AN,SAMN= ,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,頂點(diǎn)A、C分別在x,y軸的正半軸上.點(diǎn)Q在對(duì)角線OB上,且QO=OC,連接CQ并延長(zhǎng)CQ交邊AB于點(diǎn)P.則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB=10cm,BC=12cm,點(diǎn)E、F、G分別從A、B、C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針?lè)较騽蛩龠\(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為1.5cm/s,當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,△EBF關(guān)于直線EF的對(duì)稱圖形是△EB′F.設(shè)點(diǎn)E、F、G運(yùn)動(dòng)的時(shí)間為t(單位:s).

(1)當(dāng)t=s時(shí),四邊形EBFB′為正方形;
(2)若以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似,求t的值;
(3)是否存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲. 小明畫出樹狀圖如圖所示:

小華列出表格如下:

第一次
第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問(wèn)題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機(jī)抽出一張卡片后(填“放回”或“不放回”),再隨機(jī)抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對(duì)為;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為誰(shuí)獲勝的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O1 , ⊙O2的圓心在直線l上,⊙O1的半徑為2cm,⊙O2的半徑為3cm.O1O2=8cm,⊙O1以1cm/s的速度沿直線l向右運(yùn)動(dòng),7s后停止運(yùn)動(dòng).在此過(guò)程中,⊙O1和⊙O2沒(méi)有出現(xiàn)的位置關(guān)系是(
A.外切
B.相交
C.內(nèi)切
D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某海域內(nèi)有一艘輪船發(fā)生故障,海事救援船接到求救信號(hào)后立即從港口出發(fā)沿直線勻速前往救援,與故障漁船會(huì)合后立即將其拖回.如圖折線段O﹣A﹣B表示救援船在整個(gè)航行過(guò)程中離港口的距離y(海里)隨航行時(shí)間x(分鐘)的變化規(guī)律.拋物線y=ax2+k表示故障漁船在漂移過(guò)程中離港口的距離y(海里)隨漂移時(shí)間x(分鐘)的變化規(guī)律.已知救援船返程速度是前往速度的 .根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)救援船行駛了海里與故障船會(huì)合;
(2)求該救援船的前往速度;
(3)若該故障漁船在發(fā)出求救信號(hào)后40分鐘內(nèi)得不到營(yíng)救就會(huì)有危險(xiǎn),請(qǐng)問(wèn)救援船的前往速度每小時(shí)至少是多少海里,才能保證故障漁船的安全.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年12月16﹣18日,第二屆互聯(lián)網(wǎng)大會(huì)在浙江烏鎮(zhèn)勝利舉行,這說(shuō)明我國(guó)互聯(lián)網(wǎng)發(fā)展走到了世界的前列,尤其是電子商務(wù).據(jù)市場(chǎng)調(diào)查,天貓超市在銷售一種進(jìn)價(jià)為每件40元的護(hù)眼臺(tái)燈中發(fā)現(xiàn):每月銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)當(dāng)銷售單價(jià)定為50元時(shí),求每月的銷售件數(shù);
(2)設(shè)每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)關(guān)于銷售單價(jià)x(元)的函數(shù)解析式;
(3)由于市場(chǎng)競(jìng)爭(zhēng)激烈,這種護(hù)眼燈的銷售單價(jià)不得高于75元,如果要每月獲得的利潤(rùn)不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

同步練習(xí)冊(cè)答案