如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.

(1)求出拋物線的解析式;

(2)P是拋物線上一動點,過PPMx軸,垂足為M,是否存在P點,使得以AP,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;

(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

 

【答案】

(1) (2)存在!P為(2,1)或(5,-2)或(-3,-14) (3)D(2,1)

【解析】

試題分析:(1)∵該拋物線過點C(0,-2),∴可設(shè)該拋物線的解析式為y=ax2+bx-2.

A(4,0),B(1,0),代入,得  解之

∴此拋物線的解析式為

(2)存在!如圖,設(shè)P點的橫坐標為m,則P點的縱坐標為,

當1<m<4時,AM=4-m,.又∵∠COA=∠PMA=90°,

∴① 當時,△PMA∽△COA,即  

解之 m1="2," m2=4(舍去),   ∴P(2,1).

② 當時,△APM∽△CAO,即

解之 m1="4," m2=5(均不合題意,舍去)

∴當1<m<4時,P(2,1)  類似地可求出, 當m>4時,P(5,-2)

m<1時,P(-3,-14)

綜上所述,符合條件的點P為(2,1)或(5,-2)或(-3,-14)

(3)如圖,設(shè)D點的橫坐標為t(0<t<4),則D點的縱坐標為

Dy軸的平行線交ACE.由題意,可求得直線AC的解析式為:,

E點的坐標為.∴ =

從而,SDAC==-t2+4t=-(t-2)2+4.∴當t=2時,△DAC面積最大.∴D(2,1)

考點:拋物線

點評:本題考查拋物線的知識,要求考生根據(jù)拋物線的概念和性質(zhì)來解本題

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.
(1)求出拋物線的解析式;
(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;
(3)在直線AC上方的拋物線上有一點D,使得△DCA的面積最大,求出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點,
(1)求拋物線的解析式;
(2)求該拋物線的頂點坐標以及最值;
(3)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蘇州一模)如圖,拋物線經(jīng)過A,C,D三點,且三點坐標為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個交點為B點,點F為y軸上一動點,作平行四邊形DFBG,
(1)B點的坐標為
(3,0)
(3,0)
;
(2)是否存在F點,使四邊形DFBG為矩形?如存在,求出F點坐標;如不存在,說明理由;
(3)連結(jié)FG,F(xiàn)G的長度是否存在最小值?如存在求出最小值;若不存在說明理由;
(4)若E為AB中點,找出拋物線上滿足到E點的距離小于2的所有點的橫坐標x的范圍:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•高要市二模)已知:如圖,拋物線經(jīng)過點O、A、B三點,四邊形OABC是直角梯形,其中點A在x軸上,點C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過A(-2,0)、B(8,0)兩點,與y軸正半軸交與點C,且AB=BC,點P為第一象限內(nèi)拋物線上一動點(不與B、C重合),設(shè)點P的坐標為(m,n).
(1)求拋物線的解析式;
(2)點D在BC上,且PD∥y軸,探索
BD•DCPD
的值;
(3)設(shè)拋物線的對稱軸為l,若以點P為圓心的⊙P與直線BC相切,請寫出⊙P的半徑R關(guān)于m函數(shù)關(guān)系式,并判斷⊙P與直線l的位置關(guān)系.

查看答案和解析>>

同步練習冊答案