【題目】如圖4,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F,E分別是AB,BC的中點,則下列結論不一定正確的是( )
A.△ABC是等腰三角形B.四邊形EFAM是菱形
C.D.DE平分∠CDF
【答案】D
【解析】
試題連接AE,如圖所示,
∵E為BC的中點,
∴BE=CE=BC,又BC=2AD,
∴AD=BE=EC,又AD∥BC,
∴四邊形ABED為平行四邊形,四邊形AECD為平行四邊形,
又∵∠DCB=90°,
∴四邊形AECD為矩形,
∴∠AEC=90°,即AE⊥BC,
∴AE垂直平分BC,
∴AB=AC,即△ABC為等腰三角形,
故選項A不合題意;
∵E為BC的中點,F為AB的中點,
∴EF為△ABC的中位線,
∴EF∥AC,EF=AC,
又∵四邊形ABED為平行四邊形,
∴AF∥ME,
∴四邊形AFEM為平行四邊形,
又∵AF=AB=AC=EF,
∴四邊形AFEM為菱形,
故選項B不合題意;
過F作FN⊥BC于N點,可得FN∥AE,
又∵F為AB的中點,
∴N為BE的中點,
∴FN為△ABE的中位線,
∴FN=AE,
又∵AE=DC,BE=AD,
∴S△BEF=S△ACD,
故選項C不合題意;
DE不一定平分∠CDF,
故選項D符合題意.
故選D.
科目:初中數學 來源: 題型:
【題目】已知正方形,點是其內部一點.
(1)如圖1,點在邊的垂直平分線上,將繞點逆時針旋轉,得到,當點落在上時,恰好點落在直線上,求的度數;
(2)如圖2,點在對角線上,連接,若將線段繞點逆時針旋轉后得到線段,試問點是否在直線上,請給出結論,并說明理由;
(3)如圖3,若,設,,,請寫出、、這三條線段長之間滿足的數量關系是____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象記為,它與x軸交于點O,;將繞點旋轉得,交x軸于點;將繞點旋轉得,交x軸于點;……如此進行下去,得到一條“波浪線”.若在這條“波浪線”上,則________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于一個關于x的代數式A,若存在一個系數為正數關于x的單項式F,使的結果是所有系數均為整數的整式,則稱單項式F為代數式A的“整系單項式”.例如:
當A=,F=2x3時,由于=1,故2x3是的整系單項式;
當A=,F=6x5時,由于,故6x5是的整系單項式;
當A=3-,F=時,由于=2x-1,故是3-的整系單項式;
當A=3-,F=8x4時,由于,故8x4是3-的整系單項式;
顯然,當代數式A存在整系單項式F時,F有無數個,現把次數最低,系數最小的整系單項式F記為F(A).例如:,
閱讀以上材料并解決下列問題:
(1)判斷:當A=時,F=2x3______A的整系單項式(填“是”或“不是”)
(2)解方程:
(3)已知a、b、c是△ABC的邊長,其中a、b滿足(a-5)2+=0,且關于x的方程||=c有且只有3個不相等的實數根,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個小風箏與一個大風等形狀完全相同,它們的形狀如圖所示,其中對角線AC⊥BD.已知它們的對應邊之比為1:3,小風箏兩條對角線的長分別為12cm和14cm.
(1)小風箏的面積是多少?
(2)如果在大風箏內裝設一個連接對角頂點的十字交叉形的支撐架,那么至少需用多長的材料?(不記損耗)
(3)大風箏要用彩色紙覆蓋,而彩色紙是從一張剛好覆蓋整個風箏的矩形彩色紙(如圖中虛線所示)裁剪下來的,那么從四個角裁剪下來廢棄不用的彩色紙的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】方格圖中的每個小方格都是邊長為1小正方形,我們把小正方形的頂點稱為格點,格點連線為邊的四邊形稱為“格點四邊形”,圖1中的四邊形ABCD就是一個格點四邊形.
(1)小彬在圖2的方格圖中畫了一個格點四邊形EFGH.借助方格圖回答:四邊形ABCD與四邊形EFGH相似嗎?若相似,直接寫出四邊形ABCD與四邊形EFGH的相似比;若不相似說明理由;
(2)請在圖3的方格圖中畫一個格點四邊形,使它與四邊形ABCD相似,但與四邊形ABCD、四邊形EFGH都不全等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與反比例函數的圖象交于A(-2,-1)、B(1,n)兩點。
(1)利用圖中條件求反比例函數和一次函數的解析式;
(2)根據圖象寫出使一次函數的值大于反比例函數的值的的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別在邊AB、AC上,DC與BE相交于點O,且DO=2,BO=DC=6,OE=3.
(1)求證:DE∥BC;
(2)如果四邊形BCED的面積比△ADE的面積大12,求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com