分析 根據(jù)坐標(biāo)先求AB的長,所以△PAB的面積S的大小取決于P的縱坐標(biāo)的大小,因此只要討論當(dāng)0≤m≤3時,P的縱坐標(biāo)的最大值和最小值即可,根據(jù)頂點(diǎn)坐標(biāo)D(1,4),由對稱性可知:x=1時,P的縱坐標(biāo)最大,此時△PAB的面積S最大;當(dāng)x=3時,P的縱坐標(biāo)最小,此時△PAB的面積S最。
解答 解:∵點(diǎn)A、B的坐標(biāo)分別為(-5,0)、(-2,0),
∴AB=3,
y=-2x2+4x+8=-2(x-1)2+10,
∴頂點(diǎn)D(1,10),
由圖象得:當(dāng)0≤x≤1時,y隨x的增大而增大,
當(dāng)1≤x≤3時,y隨x的增大而減小,
∴當(dāng)x=3時,即m=3,P的縱坐標(biāo)最小,
y=-2(3-1)2+10=2,
此時S△PAB=$\frac{1}{2}$×2AB=$\frac{1}{2}$×2×3=3,
當(dāng)x=1時,即m=1,P的縱坐標(biāo)最大是10,
此時S△PAB=$\frac{1}{2}$×10AB=$\frac{1}{2}$×10×3=15,
∴當(dāng)0≤m≤3時,△PAB的面積S的取值范圍是3≤S≤15;
故答案為:3≤S≤15.
點(diǎn)評 本題考查了二次函數(shù)的增減性和對稱性,及圖形和坐標(biāo)特點(diǎn)、三角形的面積,根據(jù)P的縱坐標(biāo)確定△PAB的面積S的最大值和最小值是本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -2(a+b)=-2a+2b | B. | x5+x5=x | C. | a6-a4=a2 | D. | 3a2•2a3=6a5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x}{3}$+$\frac{2}{3}$=$\frac{x}{4}$-$\frac{3}{4}$ | B. | $\frac{x}{3}$-$\frac{2}{3}$=$\frac{x}{4}$+$\frac{3}{4}$ | C. | $\frac{x}{3}$+$\frac{2}{3}$=$\frac{x-3}{4}$-$\frac{7}{4}$ | D. | $\frac{x}{3}$-$\frac{2}{3}$=$\frac{x-3}{4}$+$\frac{7}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com