如圖所示,在Rt△ABC中,AB=AC,∠BAC=90°,D為BC的中點。
(1)寫出點D到△ABC三個頂點A、B、C的距離的關系(不要求說明為什么);
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△DMN的形狀,并說明理由。
(1)AD=BD=CD;
(2)△DMN是等腰直角三角形。
理由:連結(jié)AD,則AD=BD,∠CAD=45°,∠B=45°,
在△AND和△BMD中,,
所以△AND≌△BMD,
所以ND=MD,∠NDA=∠MDB,
又∠MDB+∠MDA=90°,所以∠NDA+∠MDA=∠MDN=90°。
在△DMN中,ND=MD,∠MDN=90°,所以△DMN是等腰直角三角形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于點D,且AB=4,BD=5,則點D到BC的距離是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,則∠DCB=
55
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂線l分別交AB、AC及BC的延長線于點D、E、F,連接BE. 求證:EF=2DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C為圓心,R為半徑所得的圓與斜邊AB只有一個公共點,則R的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足為E,求證:四邊形CFED是菱形.

查看答案和解析>>

同步練習冊答案