(2009•上海)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P為線段BD上的動點,點Q在射線AB上,且滿足(如圖1所示).
(1)當AD=2,且點Q與點B重合時(如圖2所示),求線段PC的長;
(2)在圖1中,連接AP.當AD=,且點Q在線段AB上時,設點B、Q之間的距離為x,,其中S△APQ表示△APQ的面積,S△PBC表示△PBC的面積,求y關于x的函數(shù)解析式,并寫出函數(shù)定義域;
(3)當AD<AB,且點Q在線段AB的延長線上時(如圖3所示),求∠QPC的大。

【答案】分析:(1)當AD=2時,AD=AB,此時△ABD為等腰直角三角形,易證△BPC也是等腰直角三角形,BC長已知,則PC的長可求;
(2)易知點P到AB的距離與到BC的距離的比與BA、AD長度的比相等,即△APQ中AQ邊上的高與△PBC中BC邊上的高的比可求;AQ=2-x,BC=3,則△APQ與△BPC的面積可表示出來,利用其面積比為y,可得函數(shù)關系式;
(3)作PE⊥AB于E,PF⊥BC于F,由已知條件可證Rt△PCF∽Rt△PQE,則∠EPQ=∠FPC,利用角的和差關系可求得∠QPC=90°.
解答:解:(1)∵AD∥BC,∠ABC=90°,
∴∠A=∠ABC=90°.
當AD=2時,AD=AB,
∴∠D=∠ABD=45°,
∴∠PBC=∠D=45°.
,
∴PQ=PC,
∴∠C=∠PQC=45°,
∴∠BPC=90°.
∴PC=BC•sin45°=3×

(2)如圖,作PE⊥AB于E,PF⊥BC于F,
∵∠ABC=90°,
∴四邊形EBFP是矩形.
∴PF=BE.
又∵∠BAD=90°,
∴PE∥AD,
∴Rt△BEP∽Rt△BAD.

設BE=4k,則PE=3k,
∴PF=BE=4k.
∵BQ=x,
∴AQ=AB-BQ=2-x.
∴S△AQP=AQ•PE=(2-x)•3k,S△BPC=BC•PF=×3×4k=6k.
,
,
即y=-x+
過D作BC的垂線DM,在直角△DCM中,DC===
當P在D點時,x最大,則PC=DC=,而,得PQ=,利用勾股定理得到AQ=,所以此時BQ=
∴0≤x≤

(3)如圖,作PE⊥AB于E,PF⊥BC于F,
∵∠ABC=90°,
∴四邊形EBFP是矩形.
∴PF=BE,∠EPF=90°.
又∵∠A=90°,
∴PE∥AD.
∴Rt△BEP∽Rt△BAD.


又∵

∴Rt△PCF∽Rt△PQE,
∴∠EPQ=∠FPC.
∵∠EPQ+∠QPF=∠EPF=90°,
∴∠FPC+∠QPF=90°,
即∠QPC=90°.
點評:本題考查相似三角形的判定與性質的實際應用及分析問題、解決問題的能力.利用數(shù)學知識解決實際問題是中學數(shù)學的重要內容.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年上海市普陀區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2009•上海)已知函數(shù)f(x)=,那么f(3)=   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《函數(shù)基礎知識》(03)(解析版) 題型:填空題

(2009•上海)已知函數(shù)f(x)=,那么f(3)=   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學三輪復習每天30分綜合訓練(01)(解析版) 題型:填空題

(2009•上海)已知函數(shù)f(x)=,那么f(3)=   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市寶山區(qū)泗塘中學初三數(shù)學基礎卷(解析版) 題型:填空題

(2009•上海)已知函數(shù)f(x)=,那么f(3)=   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年上海市中考數(shù)學試卷(解析版) 題型:填空題

(2009•上海)已知函數(shù)f(x)=,那么f(3)=   

查看答案和解析>>

同步練習冊答案