【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,弦CD∥BM,交AB于點F,且DA=DC,鏈接AC,AD,延長AD交BM地點E.
(1)求證:△ACD是等邊三角形.
(2)連接OE,若DE=2,求OE的長.
【答案】(1)見解析;(2)2.
【解析】
試題分析:(1)由AB是⊙O的直徑,BM是⊙O的切線,得到AB⊥BE,由于CD∥BE,得到CD⊥AB,根據(jù)垂徑定理得到=,于是得到AD=AC,然后根據(jù)已知DA=DC,得出AD=AC=CD,即可證得;
(2)連接OE,過O作ON⊥AD于N,由(1)知,△ACD是等邊三角形,得到∠DAC=60°又直角三角形的性質(zhì)得到BE=AE,ON=AO,設(shè)⊙O的半徑為:r則ON=r,AN=DN=r,由于得到EN=2+r,BE=AE=,在Rt△DEF與Rt△BEO中,由勾股定理列方程即可得到結(jié)論.
(1)證明:∵AB是⊙O的直徑,BM是⊙O的切線,
∴AB⊥BE,
∵CD∥BE,
∴AB⊥CD,
∴=,
∴AD=AC,
∵DA=DC,
∴AD=AC=CD,
∴△ACD是等邊三角形;
(2)解:連接OE,過O作ON⊥AD于N,由(1)知,△ACD是等邊三角形,
∴∠DAC=60°
∵AD=AC,CD⊥AB,
∴∠DAB=30°,
∴BE=AE,ON=AO,
設(shè)⊙O的半徑為:r,
∴ON=r,AN=DN=r,
∴EN=2+r,BE=AE=,
在Rt△NEO與Rt△BEO中,
OE2=ON2+NE2=OB2+BE2,
即()2+(2+)2=r2+()2,
∴r=2,
∴OE2=()2+25=28,
∴OE=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.
(1)填空:與∠AOE互補的角是 ;
(2)若∠AOD=36°,求∠DOE的度數(shù);
(3)當(dāng)∠AOD=x°時,請直接寫出∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線上,則a的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)分別是平行四邊形ABCD的邊AB,DC上的點,AF與DE相交于點P,F(xiàn)B與EC相交于點B,若S△APD=15cm2,S△BQC=25cm2,則陰影部分的面積為( )
A.10cm2 B.20cm2 C.30cm2 D.40cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在紅城中學(xué)舉行的“我愛祖國”征文活動中,七年級和八年級共收到征文118篇,且七年級收到的征文篇數(shù)是八年級收到的征文篇數(shù)的一半還少2篇,求七年級收到的征文有多少篇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:數(shù)軸上A、B兩點表示的有理數(shù)分別為a、b,且(a﹣1)2+|b+2|=0,
(1)求(a+b)2015的值.
(2)數(shù)軸上的點C與A、B兩點的距離的和為7,求點C在數(shù)軸上表示的數(shù)c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com