解:(1)四邊形ABCD是等腰梯形,理由如下:
∵在四邊形DEBC中,DC∥EB,DE∥BC,
∴四邊形DEBC為平行四邊形,
∴DE=BC,
又∴DE=AD,
∴AD=BC,
∴四邊形ABCD是等腰梯形;
(2)由(1)可知四邊形DEBC為平行四邊形,
∴DC=BE=4,
∵AB=10,
∴AE=AB-BE=10-4=6,
∵∠B=60°,
∴∠A=∠DEB=60°,
∴△ADE是等邊三角形,
∴AD=DE=BC=6,
∴梯形ABCD的周長=AD+DC+BC+AB=6+4+6+10=26.
分析:(1)四邊形ABCD為等腰梯形,首先證明四邊形DEBC是平行四邊形,再有已知條件證明AD=BC即可證明四邊形ABCD是等腰梯形;
(2)首先證明△ADE是等邊三角形,可得到AD=DE=AE,根據已知數據可求出AE的長,進而求出梯形ABCD的周長.
點評:此題考查了平行四邊形的判定與性質、等邊三角形的判定和性質以及等腰梯形的判定和性質;解題時要熟練掌握定義梯形的性質及平行四邊形的性質,屬于基礎性題目.