如圖,DE∥BC,AD:DB=2:3,則△ADE與△ABC的周長之比為    ,面積之比為   
【答案】分析:根據(jù)相似三角形的判定定理可知ADE∽△ABC,再根據(jù)相似三角形的性質即可解答.
解答:解:∵DE∥BC,
∴ADE∽△ABC
∵AD:DB=2:3,
∴AD:AB=2:5,
∴△ADE與△ABC的周長之比為2:5,面積之比為22:52=4:25.
點評:本題考查對相似三角形性質的理解:
(1)相似三角形周長的比等于相似比;
(2)相似三角形面積的比等于相似比的平方;
(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,DE∥BC,且DB=AE,若AB=5,AC=10,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,DE∥BC,將△ABC沿DE所在的直線折疊,點A正好落在BC邊上F處,若∠B=40°,則∠BDF=
100
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,DE∥BC,AD:DB=3:4,則△ADE與△ABC的周長之比為
 
;面積之比為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•廣西)如圖,DE∥BC,AB=15,AC=9,BD=4,那么AE=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•河北)已知:如圖,DE∥BC,AD=3.6,DB=2.4,AC=7.求EC的長.

查看答案和解析>>

同步練習冊答案