如圖1、四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點(diǎn)B落在D處,AD交OC于E,
(1)求OE的長;
(2)求過O、D、C三點(diǎn)拋物線的解析式;
(3)如圖2過D做矩形DFGH,F(xiàn)G在x軸上,H在(2)中的拋物線上,求矩形DFGH的面積S是多少?

解:(1)∵四邊形OABC是矩形,
∴∠CDE=∠AOE=90°,OA=BC=CD.
又∵∠CED=∠OEA,
在△CDE和△AOE中,
,
∴△CDE≌△AOE(AAS).
∴OE=DE.
∴OE2+OA2=(AD-DE)2,
即OE2+42=(8-OE)2
解之,得OE=3.

(2)由(1)得出:EC=8-3=5.
如圖1,過D作DG⊥EC于G,
∵∠DGE=∠CDE,∠DEG=∠CED,
∴△DGE∽△CDE.
=,
∴DG=,EG=
∴D(,).
因?yàn)镺點(diǎn)為坐標(biāo)原點(diǎn),
故可設(shè)過O,C,D三點(diǎn)拋物線的解析式為y=ax2+bx.
,
解之,得,
∴拋物線的解析式為:y=-x2+x;

(3)∵C點(diǎn)坐標(biāo)為:(8,0),
∴對稱軸為:直線x=4,
∵D(),
∴H點(diǎn)與D點(diǎn)關(guān)于直線x=4對稱,
∴H點(diǎn)坐標(biāo)為;(),
∴HD=-=,
∴矩形DFGH的面積S為:DF×DH=×=
分析:(1)已知四邊形OABC是矩形,證明△CDE≌△AOE推出OE2+OA2=(AD-DE)2求出OE.
(2)本題要借助輔助線的幫助,證明∴△DGE∽△CDE,根據(jù)線段比求出DG,EG以及點(diǎn)D的坐標(biāo),列出解析式求出a,b的值.
(3)根據(jù)C點(diǎn)坐標(biāo)得出拋物線的對稱軸,再利用D點(diǎn)坐標(biāo)得出H點(diǎn)坐標(biāo),進(jìn)而得出DH,DF的長即可得出答案.
點(diǎn)評:此題主要考查了二次函數(shù)的綜合應(yīng)用以及翻折變換的性質(zhì)和全等三角形的判定與性質(zhì)和相似三角形的判定與性質(zhì)等知識,根據(jù)已知得出D點(diǎn)坐標(biāo)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6cm,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到Rt△OA1B1
(1)直接寫出線段OA1的長度和∠AOB1的度數(shù);
(2)連接AA1,則四邊形OAA1B1是平行四邊形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•臺州模擬)如圖等腰三角形紙片OAB,現(xiàn)要求在紙片上截一個(gè)正方形,使它的面積盡可能大.
小明的一種設(shè)計(jì)方案是:如圖,在扇形紙片OAB內(nèi),畫正方形CDEF,使C、D在OA上,F(xiàn)在OB上;連接OE并延長交弧AB于I,畫IH∥ED交OA于H,IJ∥EF交OB于J,再畫JG∥FC交OA于G.
(1)你能說明
EF
JI
=
DE
HI
嗎?
(2)四邊形GHIJ是正方形嗎?如果是,請證明.如果不是,請說明理由.
(3)如果扇形OAB的圓心角∠AOB=30°,OA=6cm,小明截得的四邊形GHIJ面積是多少(
3
≈1.73
,結(jié)果精確到0.1cm2)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1
(1)線段OA1的長是
6
6
,∠AOB1的度數(shù)是
135°
135°
;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1的位置所經(jīng)過的路線的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△OAB繞點(diǎn)O旋轉(zhuǎn)l80°得到△OCD,連接AD,BC,得到四邊形ABCD.
則AB
平行且等于
平行且等于
CD;與△AOD成中心對稱三角形是
△COB
△COB
,由此可得到AD
平行且等于
平行且等于
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•株洲)如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1
(1)線段OA1的長是
6
6
,∠AOB1的度數(shù)是
135
135
度;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)四邊形OAA1B1的面積.

查看答案和解析>>

同步練習(xí)冊答案