如圖,已知AB是⊙O的直徑,P是AB延長線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC•CE=PA•BE.

【答案】分析:(1)連AC、BC,OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD,
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.
解答:證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線,
∴OC⊥PD,
而AD⊥PC,
∴OC∥PD,
∴∠ACO=∠CAD,
而∠ACO=∠OAC,
∴∠DAC=∠CAO,
又∵CE⊥AB,
∴∠AEC=90°,
∴Rt△ACE≌Rt△ACD,
∴CD=CE,AD=AE;
(2)在Rt△PCE和Rt△PAD中,∠CPE=∠APD,
∴Rt△PCE∽Rt△PAD,
∴PC:PA=CE:AD,
又∵AB為⊙O的直徑,
∴∠ACB=90°,
而∠DAC=∠CAO,
∴Rt△EBC∽Rt△DCA,
∴BE:CE=CD:AD,
而CD=CE,
∴BE:CE=CE:AD,
∴BE:CE=PC:PA,
∴PC•CE=PA•BE.
點(diǎn)評:本題考查了切線的性質(zhì):圓的切線垂直于過切點(diǎn)的半徑.也考查了全等三角形的判定與性質(zhì)、圓周角定理得推理以及三角形相似的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案