如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


【答案】分析:(1)由勾股定理可得AC長度,由于AC=A1C,因為∠ACA1=60°,所以△ACA1為等邊三角形,那么AA1=AC
(2)易得BD2是等腰梯形的上底,那么可過梯形上底兩個端點作下底的垂線,得到兩個全等的直角三角形,把所求線段轉移到下底求解.
(3)易得陰影部分為平行四邊形,那么可根據(jù)相應的三角函數(shù)求得陰影部分的底與高.
解答:解:(1)在Rt△ABC中,由勾股定理得,,
在△ACA1中,∵AC=A1C,∠ACA1=60°,
∴△ACA1為等邊三角形.
∴AA1=AC=8.(4分)

(2)如圖2所示,過B,D2分別作BE⊥AC于E,D2F⊥AC于F,則BE∥D2F,
在Rt△ABC中,∵AB=4,BC=4,tan∠BAC===,
∴∠BAC=60°.
在Rt△ABE中,AB=4,∠BAE=60°,∠ABE=30°,
∴AE=AB=2,BE=2
同理,CF=2,
∴EF=AC-AE-CF=8-2-2=4,
,
∴四邊形BEFD2是平行四邊形,
∴BD2=EF=4.(8分)

(3)如圖3所示,AA2=x,x,,
∵平移的概念及矩形的性質得AG∥C1H,GC1∥AH,
∴四邊形AGC1H是平行四邊形,
∴y=S平行四邊形AGC1H=AG•AD3=(0≤x≤4).(12分)

點評:旋轉前后,翻折前后得到的對應線段和角都相等,作等腰梯形的兩高構造直角三角形是常用的輔助線方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

同步練習冊答案