已知,菱形ABCD周長為40,對角線AC=12,則菱形的面積是
96
96
分析:根據(jù)菱形的周長可以計(jì)算菱形的邊長,菱形的對角線互相垂直平分,已知AB,BO根據(jù)勾股定理即可求得AO的值,根據(jù)對角線長即可計(jì)算菱形ABCD的面積.
解答:解:
菱形ABCD的周長為40,則AB=10,
∵AC=12,∴AO=6,
∵菱形對角線互相垂直,
∴△ABO為直角三角形,
∴BO=
AB2-AO2
=8,
BD=2BO=16,
∴菱形ABCD的面積=
1
2
AC•BD=
1
2
×12×16=96.
故答案為96.
點(diǎn)評:本題考查了菱形對角線互相垂直平分的性質(zhì),菱形各邊長相等的性質(zhì),勾股定理在直角三角形中的運(yùn)用,本題中根據(jù)勾股定理求AO的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.
②若點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.
(2)如圖1,求AF的長.
(3)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,點(diǎn)P的速度為每秒1cm,設(shè)運(yùn)動時間為t秒.
①問在運(yùn)動的過程中,以A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形有可能是矩形嗎?若有可能,請求出運(yùn)動時間t和點(diǎn)Q的速度;若不可能,請說明理由.
②若點(diǎn)Q的速度為每秒0.8cm,當(dāng)A、P、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:矩形ABCD中AD>AB,O是對角線的交點(diǎn),過O任作一直線分別交BC、AD于點(diǎn)M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,如圖③,若AB=4cm,BC=8cm,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AMB和△CDN各邊勻速運(yùn)動一周.即點(diǎn)P自A→M→B→A停止,點(diǎn)Q自C→D→N→C停止.在運(yùn)動過程中,已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市九年級下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,

①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.

②若點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué) 題型:解答題

(2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,

①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.

②若點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

 

查看答案和解析>>

同步練習(xí)冊答案