【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半徑.
【答案】(1)見解析;(2)
【解析】分析: (1)首先連接CO,根據(jù)CD與⊙O相切于點(diǎn)C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先設(shè)CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.
詳解:
(1)證明:如圖,連接CO,
,
∵CD與⊙O相切于點(diǎn)C,
∴∠OCD=90°,
∵AB是圓O的直徑,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:設(shè)CD為x,
則AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半徑是.
點(diǎn)睛: 此題主要考查了切線的性質(zhì)和應(yīng)用,以及勾股定理的應(yīng)用,要熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時(shí),求該不等式的解集;
(2)m取何值時(shí),該不等式有解,并求出解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(diǎn)(橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))依次為A1,A2,A3…An,….將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:①拋物線的頂點(diǎn)M1,M2,M3,…Mn,…都在直線L:y=x上;②拋物線依次經(jīng)過點(diǎn)A1,A2,A3…An,….則頂點(diǎn)M2014的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)承辦“綠色奧運(yùn)”的號(hào)召,九年級(jí)(1)班全體師生義務(wù)植樹300棵.原計(jì)劃每小時(shí)植樹x棵,但由于參加植樹的全體師生植樹的積極性高漲,實(shí)際工作效率提高為原計(jì)劃的1.2倍,結(jié)果提前20分鐘完成任務(wù).則下面所列方程中,正確的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.
(1)平移線段到線段,使點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);
(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對(duì)應(yīng), 與對(duì)應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);
(3)在(2)的條件下,在軸上是否存在一點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣x+8與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的函數(shù)解析式是( 。
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長(zhǎng)EF交AD的延長(zhǎng)線于G,當(dāng)FG=1時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)滿足下列條件:=0,=﹣|+1|,=﹣|+2|,=﹣|+3|,……以此類推,則的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象的一支位于第一象限.
(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于軸對(duì)稱,若△OAB的面積為6,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com