已知:如圖,P是線段AB的中點(diǎn),線段MN經(jīng)過(guò)點(diǎn)P,MA⊥AB,NB⊥AB.
求證:AM=BN.

證明:∵P是線段AB的中點(diǎn),
∴AP=BP.
∵M(jìn)A⊥AB,NB⊥AB,
∴∠MAP=∠NBP=90°,
在△MAP和△NBP中,
,
∴△MAP≌△NBP(ASA),
∴AM=BN(全等三角形的對(duì)應(yīng)邊相等).
分析:根據(jù)全等三角形的判定定理ASA證得△MAP≌△NBP,然后由全等三角形的對(duì)應(yīng)邊相等即可得到AM=BN.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì).三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,D是線段AB上的點(diǎn),以BD為直徑作⊙O,AP切⊙O于E,BC⊥AF于C,連接DE精英家教網(wǎng)、BE.
(1)求證:BE平分∠ABC;
(2)若D是AB中點(diǎn),⊙O直徑BD=3
3
,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京二模)已知:如圖,P是線段AB的中點(diǎn),線段MN經(jīng)過(guò)點(diǎn)P,MA⊥AB,NB⊥AB.
求證:AM=BN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大豐市一模)已知:如圖,M是線段BC的中點(diǎn),BC=4,分別以MB、MC為邊在線段BC的同側(cè)作等邊△BAM、等邊△MCD,連接AD.
(1)求證:四邊形ABCD是等腰梯形;
(2)將△MDC繞點(diǎn)M逆時(shí)針?lè)较蛐D(zhuǎn)α(60°<α<120°),得到△MD′C′,MD′交AB于點(diǎn)E,MC′交AD于點(diǎn)F,連接EF.
①求證:EF∥D′C′;
②△AEF的周長(zhǎng)是否存在最小值?如果不存在,請(qǐng)說(shuō)明理由;如果存在,請(qǐng)計(jì)算出△AEF周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,C是線段AB的中點(diǎn),∠A=∠B,∠ACE=∠BCD.
求證:AD=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,M是線段BC的中點(diǎn),BC=4,分別以MB、MC為邊在線段BC的同側(cè)作等邊△BAM、等邊△MCD,連接AD

1.求證:四邊形ABCD是等腰梯形

2.將△MDC繞點(diǎn)M逆時(shí)針?lè)较蛐D(zhuǎn)α(60º<α<120º),得到△MD´C´,MD´交AB于點(diǎn)E,MC´交AD于點(diǎn)F,連接EF.

①求證:EF∥D´C´;

②△AEF的周長(zhǎng)是否存在最小值?如果不存在,請(qǐng)說(shuō)明理由;如果存在,請(qǐng)計(jì)算出△AEF周長(zhǎng)的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案