如圖,⊙O是△ABC的外接圓,BC為⊙O直徑,作∠CAD=∠B,且點(diǎn)D在BC的延長線上,CE⊥AD于點(diǎn)E.

(1)求證:AD是⊙O的切線;

(2)若⊙O的半徑為8,CE=2,求CD的長.

 

【答案】

(1)證明見解析;(2)

【解析】

試題分析:(1)首先連接OA,由BC為⊙O直徑,CE⊥AD,∠CAD=∠B,易求得∠CAD+∠OAC=90°,即∠OAD=90°,則可證得AD是⊙O的切線;

(2)易證得△CED∽△OAD,然后設(shè)CD=x,則OD=x+8,由相似三角形的對(duì)應(yīng)邊成比例,可得方程:,繼而求得答案.

試題解析:(1)證明:連接OA,

∵BC為⊙O的直徑,

∴∠BAC=90°,

∴∠B+∠ACB=90°,

∵OA=OC,

∴∠OAC=∠OCA,

∵∠CAD=∠B,

∴∠CAD+∠OAC=90°,

即∠OAD=90°,

∴OA⊥AD,

∵點(diǎn)A在圓上,

∴AD是⊙O的切線;

(2)∵CE⊥AD,

∴∠CED=∠OAD=90°,

∴CE∥OA,

∴△CED∽△OAD,

,CE=2,

設(shè)CD=x,則OD=x+8,

解得x=,

經(jīng)檢驗(yàn)x=是原分式方程的解,

所以CD=

考點(diǎn): 1.切線的判定;2.解分式方程;3.相似三角形的判定與性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請(qǐng)指出∠B與∠C的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案