(2000•昆明)已知:E、F分別是△ABC的邊AB、AC的中點(diǎn),EF=12cm,則BC=    cm.
【答案】分析:由于E、F分別是△ABC的邊AB、AC的中點(diǎn),則EF是△ABC的中位線,直接利用三角形中位線定理可求出BC.
解答:解:∵E、F是AB、AC的中點(diǎn),
∴EF是△ABC的中位線,
∴EF=BC,
∴BC=2×12=24cm.
故答案為24.
點(diǎn)評(píng):主要考查了三角形中位線定理中的數(shù)量關(guān)系:中位線等于所對(duì)應(yīng)的邊長(zhǎng)的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:解答題

(2000•昆明)已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P點(diǎn)作⊙O的割線PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線PAB,使得S△PAT=S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•昆明)已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P點(diǎn)作⊙O的割線PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線PAB,使得S△PAT=S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2000•昆明)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)0(0,0),A(1,-1),B(-2,14)和C(2,m)四點(diǎn).求這個(gè)函數(shù)的解析式及m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•昆明)已知:如圖,點(diǎn)P是半徑為5cm的⊙O外的一點(diǎn),OP=13cm;PT切⊙O于T點(diǎn),過(guò)P點(diǎn)作⊙O的割線PAB(PB>PA).設(shè)PA=x,PB=y.
(1)求y關(guān)于x的函數(shù)解析式,并確定自變量x的取值范圍;
(2)這個(gè)函數(shù)有最大值嗎?若有,求出此時(shí)△PBT的面積;若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)是否存在這樣的割線PAB,使得S△PAT=S△PBT?若存在,請(qǐng)求出PA的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•昆明)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(guò)0(0,0),A(1,-1),B(-2,14)和C(2,m)四點(diǎn).求這個(gè)函數(shù)的解析式及m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案