【題目】如圖,△ABC 是等邊三角形,點(diǎn)P 是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC 的周長為36,則PD+PE+PF=( )

A.12
B.8
C.4
D.3

【答案】A
【解析】延長EP,FP分別交AB,BC于G,H

則PD//AB,PE//BC,PF//AC,可知
四邊形PGBD,EPHC都是平行四邊形,
所以PG=BD,PE=HC
又三角形ABC 是等邊三角形
PF//AC,PD//AB
可知三角形PFG,三角形PDH 都是等邊三角形,
所以PF=PG=BD,PD=DH
三角形ABC的周長是36,
所以PD+PE+PF=DH+HC+BD=BC=12
故選A.
【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是 .若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線y= (x>0)的交點(diǎn)有(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.0個(gè),或1個(gè),或2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的“中國學(xué)生營養(yǎng)日”活動(dòng)中,設(shè)計(jì)了抽獎(jiǎng)環(huán)節(jié):在一只不透明的箱子中有3個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個(gè)球,恰好是紅球就能中獎(jiǎng),則中獎(jiǎng)的概率是多少?
(2)同時(shí)摸出兩個(gè)球,都是紅球 就能中特別獎(jiǎng),則中特別獎(jiǎng)的概率是多少?(要求畫樹狀圖或列表求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF,交點(diǎn)為G.

(1)求證:AE⊥BF;
(2)將△BCF沿BF對(duì)折,得到△BPF(如圖2),延長FP到BA的延長線于點(diǎn)Q,求sin∠BQP的值;

(3)將△ABE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點(diǎn)N,當(dāng)正方形ABCD的面積為4時(shí),求四邊形GHMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m 名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表


根據(jù)圖表中提供的信息,解答下列問題:
(1)m=;n=;p=.
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000 名學(xué)生中有多少名學(xué)生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x﹣6分別交x軸,y軸于A,B,M是反比例函數(shù)y= (x>0)的圖象上位于直線上方的一點(diǎn),MC∥x軸交AB于C,MD⊥MC交AB于D,ACBD=4 ,則k的值為(
A.﹣3
B.﹣4
C.﹣5
D.﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,添加下列條件不能判定ABCD是菱形的只有(
A.AC⊥BD
B.AB=BC
C.AC=BD
D.∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形M,給出如下的定義:若在圖形M上存在一點(diǎn)Q,使得P、Q兩點(diǎn)間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點(diǎn).
(1)當(dāng)⊙O的半徑為2時(shí),
①在點(diǎn)P1 ,0),P2 , ),P3 ,0)中,⊙O的關(guān)聯(lián)點(diǎn)是
②點(diǎn)P在直線y=﹣x上,若P為⊙O的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.
(2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+1與x軸、y軸交于點(diǎn)A、B.若線段AB上的所有點(diǎn)都是⊙C的關(guān)聯(lián)點(diǎn),直接寫出圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案