【題目】先觀察下列各式,再解答后面問題:

x2+11x+30;x211x+30;

x2+x30x2x30;

1)根據(jù)以上各式呈現(xiàn)的規(guī)律,用公式表示出來,則   

2)試用你寫的公式,直接寫出下列兩式的結(jié)果

   

   

【答案】1x2+(m+n)x+mn;(2)①a2a9900;②y213y+40

【解析】

1)直接利用已知中運算規(guī)律得出答案;

2)①結(jié)合已知運算規(guī)律即可得出答案;

②結(jié)合已知運算規(guī)律即可得出答案.

1)(x+m)(x+n)=x2+m+nx+mn

故答案為:x2+m+nx+mn;

2)①(a+99)(a100)=a2a9900;

②(y5)(y8)=y213y+40

故答案為:a2a9900;y213y+40

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠EAC,DEABE,DFACFBDCD,

1)求證:BEFC;

2)已知AC20BE4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖像交于A(1,12)和B(6,2)兩點。點P是線段AB上一動點(不與點A和B重合),過P點分別作x、y軸的垂線PC、PD交反比例函數(shù)圖像于點M、N,則四邊形PMON面積的最大值是(  。

A. B. C. 6 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知表②,表③分別是從表①中選取的一部分,表①中第一行第四個數(shù)是3,第二行第三個數(shù)是5,根據(jù)表①中的規(guī)律,解答下列問題:

1)表①中第四行第五個數(shù)是_____

2)表②,表③中的的和是_____;

3)①求第四行第幾個數(shù)是107?

②表①中第行第7個數(shù)是_____(用含的式子表示);

4)表①中第行第個數(shù)是_____(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形OABC在如圖所示平面直角坐標(biāo)系中,點B的坐標(biāo)為(4,3),連接AC.動點P從點B出發(fā),以2cm/s的速度,沿直線BC方向運動,運動到C為止不包括端點B、C,過點P作PQ∥AC交線段BA于點Q,以PQ為邊向下作正方形PQMN,設(shè)正方形PQMN與△ABC重疊部分圖形面積為S(cm2),設(shè)點P的運動時間為t(s).

(1)請用含t的代數(shù)式表示BQ長和N點的坐標(biāo);

(2)求S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;

(3)如圖2,點G在邊OC上,且OG=1cm,在點P從點B出發(fā)的同時,另有一動點E從點O出發(fā),以2cm/s的速度,沿x軸正方向運動,以O(shè)G、OE為一組鄰邊作矩形OEFG.試求當(dāng)點F落在正方形PQMN的內(nèi)部(不含邊界)時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點A10),B,0),且與y軸相交于點C

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)去年中招體育考試中女生一分鐘跳繩項目的成績情況,從中抽取部分女生的成績,繪制出如圖所示的頻數(shù)分布直方圖(從左到右依次為第一組到第六組,每小組含最小值,不含最大值)和扇形統(tǒng)計圖,請根據(jù)下列統(tǒng)計圖中提供的信息解決下列問題

(1)本次抽取的女生總?cè)藬?shù)為 第六小組人數(shù)占總?cè)藬?shù)的百分比為 請補全頻數(shù)分布直方圖;

(2)題中樣本數(shù)據(jù)的中位數(shù)落在第 組內(nèi);

(3)一分鐘跳繩不低于130次的成績?yōu)閮?yōu)秀,這個學(xué)校九年級共有女生560,請估計該校九年級女生一分鐘跳繩成績的優(yōu)秀人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AE平分BCE,,則下面的結(jié)論:①是等邊三角形;②;③;④,其中正確結(jié)論有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶某中學(xué)組織七、八、九年級學(xué)生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 度,并補全條形統(tǒng)計圖;

(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在?希埨卯嫎錉顖D或列表的方法求出七年級特等獎作文被選登在?系母怕剩

查看答案和解析>>

同步練習(xí)冊答案