【題目】在正方形ABCD中,對角線AC、BD交于點O,動點P在線段BC上(不含點B),∠BPE= ∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.
(1)當點P與點C重合時(如圖①),求證:△BOG≌△POE;
(2)通過觀察、測量、猜想: = ,并結合圖②證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求 的值.(用含α的式子表示)
【答案】
(1)
證明:∵四邊形ABCD是正方形,P與C重合,
∴OB=OP,∠BOC=∠BOG=90°,
∵PF⊥BG,∠PFB=90°,
∴∠GBO=90°﹣∠BGO,∠EPO=90°﹣∠BGO,
∴∠GBO=∠EPO,
在△BOG和△POE中, ,
∴△BOG≌△POE(ASA)
(2)
解:猜想 = .
證明:如圖2,過P作PM∥AC交BG于M,交BO于N,
∴∠PNE=∠BOC=90°,∠BPN=∠OCB.
∵∠OBC=∠OCB=45°,
∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,
∴∠MBN=∠NPE,
在△BMN和△PEN中, ,
∴△BMN≌△PEN(ASA),
∴BM=PE.
∵∠BPE= ∠ACB,∠BPN=∠ACB,
∴∠BPF=∠MPF.
∵PF⊥BM,
∴∠BFP=∠MFP=90°.
在△BPF和△MPF中, ,
∴△BPF≌△MPF(ASA).
∴BF=MF.
即BF= BM.
∴BF= PE.
即 ;
(3)
解:如圖3,過P作PM∥AC交BG于點M,交BO于點N,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.
由(2)同理可得BF= BM,∠MBN=∠EPN,
∴△BMN∽△PEN,
∴ .
在Rt△BNP中,tanα= ,
∴ =tanα.即 =tanα.
∴ tanα.
【解析】(1)由四邊形ABCD是正方形,P與C重合,易證得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,證得∠GBO=∠EPO,則可利用ASA證得:△BOG≌△POE;(2)首先過P作PM∥AC交BG于M,交BO于N,易證得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF= BM.則可求得 的值;(3)首先過P作PM∥AC交BG于點M,交BO于點N,由(2)同理可得:BF= BM,∠MBN=∠EPN,繼而可證得:△BMN∽△PEN,然后由相似三角形的對應邊成比例,求得 .
科目:初中數學 來源: 題型:
【題目】我市東坡實驗中學準備開展“陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調查了m名學生(每名學生必選且只能選擇這五項活動中的一種).
根據以上統(tǒng)計圖提供的信息,請解答下列問題:
(1)m= , n= .
(2)補全上圖中的條形統(tǒng)計圖.
(3)若全校共有2000名學生,請求出該校約有多少名學生喜愛打乒乓球.
(4)在抽查的m名學生中,有小薇、小燕、小紅、小梅等10名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線y= x+6與x軸、y軸的交點分別為A、B兩點,將∠OBA對折,使點O的對應點H落在直線AB上,折痕交x軸于點C.
(1)直接寫出點C的坐標,并求過A、B、C三點的拋物線的解析式;
(2)若(1)中拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標;若不存在,說明理由;
(3)若把(1)中的拋物線向左平移3.5個單位,則圖象與x軸交于F、N(點F在點N的左側)兩點,交y軸于E點,則在此拋物線的對稱軸上是否存在一點Q,使點Q到E、N兩點的距離之差最大?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉盤平均分成四個扇形,分別標上1,2,3,4四個數字,抽獎者連續(xù)轉動轉盤兩次,當每次轉盤停止后指針所指扇形內的數為每次所得的數(若指針指在分界線時重轉);當兩次所得數字之和為8時,返現金20元;當兩次所得數字之和為7時,返現金15元;當兩次所得數字之和為6時返現金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現的結果;
(2)某顧客參加一次抽獎,能獲得返還現金的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,E為AB邊的中點,點F是BC邊上一個動點,把△BEF沿EF向形內部折疊,點B的對應點為B′,當B′D的長最小時,BF長為( )
A.
B. ﹣1
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過C點的切線CE垂直于弦AD于點E,連OD交AC于點F.
(1)求證:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AB=8,點M在⊙O上,∠MAB=20°,N是弧MB的中點,P是直徑AB上的一動點.若MN=1,則△PMN周長的最小值為( 。
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發(fā)沿EA方向運動,連接PD,以PD為邊,在PD右側按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是( )
A.8
B.10
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com