【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點(diǎn)I,IE⊥BC與E,下列結(jié)論:①∠BIE=∠CID;②S△ABC=IE(AB+BC+AC);③BE=(AB+BC-AC);④AC=AF+DC.其中正確的結(jié)論是( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
【答案】A
【解析】
①由I為△ABC三條角平分線的交點(diǎn),IE⊥BC于E,得到∠ABI=∠IBD,由于∠CID+∠ABI=90°,即∠CIE+∠DIE+∠IBD=90°,于是得到∠BIE=∠CID;即①成立;②由I是△ABC三內(nèi)角平分線的交點(diǎn),得到點(diǎn)I到△ABC三邊的距離相等,根據(jù)三角形的面積即可得到即②成立;③如圖過I作IH⊥AB于H,IG⊥AC于G,有I是△ABC三內(nèi)角平分線的交點(diǎn),得到IE=IH=IG,通過Rt△AHT≌△RtAGI,得到AH=AG,同理BE=BF,CE=CG,于是得到即③成立;④由③證得IH=IE,∠FHI=∠IED=90°,于是得到△IHF與△DEI不一定全等,即④錯(cuò)誤.
①∵I為△ABC角平分線的交點(diǎn),IE⊥BC于E,
∴∠ABI=∠IBD,
∵∠DIC=∠DAC+∠ACI=(∠BAC+∠ACB),∠ABI=∠ABC,
∴∠CID+∠ABI=90°,
∵IE⊥BC于E,
∴∠BIE+∠IBE=90°,
∵∠ABI=∠IBE,
∴∠BIE=∠CID;
即①成立;
②∵I是△ABC三內(nèi)角平分線的交點(diǎn),
∴點(diǎn)I到△ABC三邊的距離相等,
∴S△ABC=S△ABI+S△BCI+S△ACI=ABIE+BCIE+ACIE=IE(AB+BC+AC),即②成立;
③如圖過I作IH⊥AB于H,IG⊥AC于G,
∵I是△ABC三內(nèi)角平分線的交點(diǎn),
∴IE=IH=IG,
在Rt△AHT與△RtAGI中,
,
∴Rt△AHT≌△RtAGI,
∴AH=AG,
同理BE=BH,CE=CG,
∴BE+BH=AB+BC-AH-CE=AB+BC-AC,
∴BE=(AB+BC-AC);即③成立;
④由③證得IH=IE,
∵∠FHI=∠IED=90°,
∴△IHF與△DEI不一定全等,
∴HF不一定等于DE,
∴AC=AG+CG=AH+CE≠AF+CD,即④錯(cuò)誤.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請(qǐng)問共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA=PB=PC=2,∠BPC=120°,PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長(zhǎng)為( )
A. 2B. 2C. +1D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步推廣“陽光體育”大課間活動(dòng),高新中學(xué)對(duì)已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D排球四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問題:
(1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)抽取了3名喜歡“跑步”的學(xué)生,其中有2名男生,1名女生,現(xiàn)從這3名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一次函數(shù)y=-2x+4,下列結(jié)論錯(cuò)誤的是( )
A. 函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)是
B. 函數(shù)值隨自變量的增大而減小
C. 函數(shù)的圖象不經(jīng)過第三象限
D. 函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得的圖象
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC=4,將△ABC翻折,使得點(diǎn)A落在BC的中點(diǎn)A'處,折痕分別交邊AB、AC于點(diǎn)D、點(diǎn)E,那么AD:AE的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠EAC,DE⊥AB于E,DF⊥AC于F,BD=CD,
(1)求證:BE=FC;
(2)已知AC=20,BE=4,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖像交于A(1,12)和B(6,2)兩點(diǎn)。點(diǎn)P是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A和B重合),過P點(diǎn)分別作x、y軸的垂線PC、PD交反比例函數(shù)圖像于點(diǎn)M、N,則四邊形PMON面積的最大值是( 。
A. B. C. 6 D. 12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com