【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點(diǎn)I,IE⊥BC與E,下列結(jié)論:①∠BIE=∠CID;②S△ABCIE(AB+BC+AC);③BE=(AB+BC-AC);④AC=AF+DC.其中正確的結(jié)論是( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

【答案】A

【解析】

①由IABC三條角平分線的交點(diǎn),IEBCE,得到∠ABI=IBD,由于∠CID+ABI=90°,即∠CIE+DIE+IBD=90°,于是得到∠BIE=CID;即①成立;②由IABC三內(nèi)角平分線的交點(diǎn),得到點(diǎn)IABC三邊的距離相等,根據(jù)三角形的面積即可得到即②成立;③如圖過IIHABH,IGACG,有IABC三內(nèi)角平分線的交點(diǎn),得到IE=IH=IG,通過RtAHT≌△RtAGI,得到AH=AG,同理BE=BF,CE=CG,于是得到即③成立;④由③證得IH=IE,FHI=IED=90°,于是得到IHFDEI不一定全等,即④錯(cuò)誤.

①∵IABC角平分線的交點(diǎn),IEBCE,

∴∠ABI=IBD,

∵∠DIC=DAC+ACI=BAC+ACB),ABI=ABC,

∴∠CID+ABI=90°,

IEBCE,

∴∠BIE+IBE=90°,

∵∠ABI=IBE,

∴∠BIE=CID;

即①成立;

②∵IABC三內(nèi)角平分線的交點(diǎn),

∴點(diǎn)IABC三邊的距離相等,

SABC=SABI+SBCI+SACI=ABIE+BCIE+ACIE=IE(AB+BC+AC),即②成立;

③如圖過IIHABH,IGACG,

IABC三內(nèi)角平分線的交點(diǎn),

IE=IH=IG,

RtAHTRtAGI中,

,

RtAHT≌△RtAGI,

AH=AG,

同理BE=BH,CE=CG,

BE+BH=AB+BC-AH-CE=AB+BC-AC,

BE=(AB+BC-AC);即③成立;

④由③證得IH=IE,

∵∠FHI=IED=90°,

∴△IHFDEI不一定全等,

HF不一定等于DE,

AC=AG+CG=AH+CE≠AF+CD,即④錯(cuò)誤.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.

(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?

(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請(qǐng)問共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知PAPBPC2,∠BPC120°,PABC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長(zhǎng)為(  )

A. 2B. 2C. +1D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步推廣“陽光體育”大課間活動(dòng),高新中學(xué)對(duì)已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D排球四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問題:

(1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

(2)隨機(jī)抽取了3名喜歡“跑步”的學(xué)生,其中有2生,1生,現(xiàn)從這3名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一次函數(shù)y=-2x+4,下列結(jié)論錯(cuò)誤的是(  )

A. 函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)是

B. 函數(shù)值隨自變量的增大而減小

C. 函數(shù)的圖象不經(jīng)過第三象限

D. 函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC=4,將△ABC翻折,使得點(diǎn)A落在BC的中點(diǎn)A'處,折痕分別交邊AB、AC于點(diǎn)D、點(diǎn)E,那么AD:AE的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A=,B=

(1)求3A+6B;

(2)若3A+6B的值與a的取值無關(guān),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠EACDEABE,DFACF,BDCD

1)求證:BEFC;

2)已知AC20,BE4,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖像交于A(1,12)和B(6,2)兩點(diǎn)。點(diǎn)P是線段AB上一動(dòng)點(diǎn)(不與點(diǎn)A和B重合),過P點(diǎn)分別作x、y軸的垂線PC、PD交反比例函數(shù)圖像于點(diǎn)M、N,則四邊形PMON面積的最大值是(  。

A. B. C. 6 D. 12

查看答案和解析>>

同步練習(xí)冊(cè)答案