(2012•大連)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
m
x
的圖象都經(jīng)過點A(-2,6)和點(4,n).
(1)求這兩個函數(shù)的解析式;
(2)直接寫出不等式kx+b≤
m
x
的解集.
分析:(1)把A的坐標代入反比例函數(shù)的解析式求出m,得出反比例函數(shù)的解析式,把B的坐標代入反比例函數(shù)的解析式,能求出n,即可得出B的坐標,分別把A、B的坐標代入一次函數(shù)的解析式得出方程組,求出方程組的解,即可得出一次函數(shù)的解析式;
(2)根據(jù)一次函數(shù)與反比例函數(shù)的圖象即可得出答案.
解答:解:(1)∵把A(-2,6)代入y=
m
x
得:m=-12,
∴y=-
12
x
,
∵把(4,n)代入y=-
12
x
得:n=-3,
∴B(4,-3),
把A、B的坐標代入y=kx+b得:
6=-2k+b
-3=4k+b

解得:k=-
3
2
,b=3,
即y=-
3
2
x+3,
答:反比例函數(shù)的解析式是y=-
12
x
,一次函數(shù)的解析式是y=-
3
2
x+3.

(2)不等式kx+b≤
m
x
的解集是-2≤x<0或x≥4.
點評:本題考查了用待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式,一次函數(shù)與反比例函數(shù)的交點問題的應(yīng)用,通過做此題培養(yǎng)了學(xué)生的計算能力和觀察圖形的能力,題目比較典型,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大連)如圖,△ABC是⊙O的內(nèi)接三角形,若∠BCA=60°,則∠ABO=
30
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大連)如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為
0.5
0.5
(精確到0.1).
投籃次數(shù)(n) 50 100 150 200 250 300 500
投中次數(shù)(m) 28 60 78 104 123 152 251
投中頻率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大連)如圖,為了測量電線桿AB的高度,小明將測量儀放在與電線桿的水平距離為9m的D處.若測角儀CD的高度為1.5m,在C處測得電線桿頂端A的仰角為36°,則電線桿AB的高度約為
8.1
8.1
m.(精確到0.1m).(參考數(shù)據(jù)sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大連)如圖,矩形ABCD中,AB=15cm,點E在AD上,且AE=9cm,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A′處,則A′C=
8
8
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•大連)如圖,拋物線y=ax2+bx+c經(jīng)過A(-
3
,0)、B(3
3
,0)、C(0,3)三點,線段BC與拋物線的對稱軸相交于D.該拋物線的頂點為P,連接PA、AD、DP,線段AD與y軸相交于點E.
(1)求該拋物線的解析式;
(2)在平面直角坐標系中是否存在點Q,使以Q、C、D為頂點的三角形與△ADP全等?若存在,求出點Q的坐標;若不存在,說明理由;
(3)將∠CED繞點E順時針旋轉(zhuǎn),邊EC旋轉(zhuǎn)后與線段BC相交于點M,邊ED旋轉(zhuǎn)后與對稱軸相交于點N,連接PM、DN,若PM=2DN,求點N的坐標(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案