如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長(zhǎng)為4.現(xiàn)做如下實(shí)驗(yàn):轉(zhuǎn)盤(pán)被劃分成4個(gè)相同的小扇形,并分別標(biāo)上數(shù)字1,2,3,4.分別轉(zhuǎn)動(dòng)兩次轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針?biāo)赶虻臄?shù)字作為直角坐標(biāo)系中M點(diǎn)的坐標(biāo)(第一次作橫坐標(biāo),第二次作縱坐標(biāo)),指針如果指向分界線(xiàn)上,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出M點(diǎn)坐標(biāo)的所有可能結(jié)果;
(2)求M點(diǎn)落在正方形ABCD面上(含內(nèi)部與邊界)的概率.

解:(1)共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4)16種情況.
(2)其中符合情況的有(1,1),(1,2),(2,1),(2,2)四種情況,所以概率是
分析:(1)根據(jù)題意,顯然每次都有四種情況,搭配的話(huà),共有16種情況;
(2)只要橫、縱坐標(biāo)都大于等于-2,小于等于2即可,然后求出概率即可.
點(diǎn)評(píng):掌握求概率的方法,特別注意分析應(yīng)滿(mǎn)足的條件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長(zhǎng)為4.現(xiàn)做如下實(shí)驗(yàn):轉(zhuǎn)盤(pán)被劃分成4個(gè)相同的小扇形,并分別標(biāo)上數(shù)字1,2,3,4,分別轉(zhuǎn)動(dòng)兩次轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針?biāo)赶虻臄?shù)字作為直角坐標(biāo)系中M點(diǎn)的坐標(biāo)(精英家教網(wǎng)第一次作橫坐標(biāo),第二次作縱坐標(biāo)),指針如果指向分界線(xiàn)上,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)請(qǐng)你用樹(shù)狀圖或列表的方法,求M點(diǎn)落在正方形ABCD面上(含內(nèi)部與邊界)的概率;
(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在某種平移,使點(diǎn)M落在正方形ABCD面上的概率為
34
?若存在,指出一種具體的平移過(guò)程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長(zhǎng)為4.現(xiàn)做如下實(shí)驗(yàn):轉(zhuǎn)盤(pán)被劃分成4個(gè)相同的小扇形,并分別標(biāo)上數(shù)字1,2,3,4.分別轉(zhuǎn)動(dòng)兩次轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針?biāo)赶虻臄?shù)字作為直角坐標(biāo)系中M點(diǎn)的坐標(biāo)(第一次作橫坐標(biāo),第二次作縱坐標(biāo)),指針如果指向分界線(xiàn)上,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示出M點(diǎn)坐標(biāo)的所有可能結(jié)果;
(2)求M點(diǎn)落在正方形ABCD面上(含內(nèi)部與邊界)的概率.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(一)如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長(zhǎng)為4.現(xiàn)做如下實(shí)驗(yàn):
拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中的一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)的點(diǎn)數(shù)作為直角坐標(biāo)系中P點(diǎn)的坐標(biāo)(第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD面上的概率為
34
?若存在,指出其中的一種平移方式;若不存在,請(qǐng)說(shuō)明理由;
(二)若將(一)中所做實(shí)驗(yàn)用的“正四面體骰子”改為“各面標(biāo)有1至6這六個(gè)數(shù)字中的一個(gè)的正方體骰子”,其余(實(shí)驗(yàn)步驟、作用)均不變.將正方形ABCD平移整數(shù)個(gè)單位,試求出點(diǎn)P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,放在直角坐標(biāo)系中的正方形ABCD邊長(zhǎng)為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD
面上的概率為
34
;若存在,指出其中的一種平移方式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(04):25.1 平移變換(解析版) 題型:解答題

(一)如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長(zhǎng)為4.現(xiàn)做如下實(shí)驗(yàn):
拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中的一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)的點(diǎn)數(shù)作為直角坐標(biāo)系中P點(diǎn)的坐標(biāo)(第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請(qǐng)說(shuō)明理由;
(二)若將(一)中所做實(shí)驗(yàn)用的“正四面體骰子”改為“各面標(biāo)有1至6這六個(gè)數(shù)字中的一個(gè)的正方體骰子”,其余(實(shí)驗(yàn)步驟、作用)均不變.將正方形ABCD平移整數(shù)個(gè)單位,試求出點(diǎn)P落在正方形ABCD面上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案