如圖,在兩面墻之間有一根底端在A點的竹竿,當它靠在一側(cè)墻上時,竹竿的頂端在B點;當它靠在另一側(cè)墻上時,竹竿的頂端在D點.已知∠BAC=60°,∠DAE=45°,AC=2米,則DE的高度為
2
2
2
2
 米.(墻面垂直地面)
分析:在Rt△ABC中,運用在直角三角形中,30°角所對的直角邊等于斜邊的一半,可求出梯子的總長度,在Rt△ADE中,根據(jù)已知條件運用勾股定理可求出DE的長.
解答:解:在Rt△ABC中,
∵∠BAC=60°,
∴∠ABC=30°,
∵AC=
1
2
AB,
∴AB=2AC=4米,
即梯子的總長為4米,
∴AD=AB=4米,
∵∠DAE=45°,
∴AE=AD=2
2
米,
故答案為:2
2
點評:本題考查了勾股定理的應用,如何從實際問題中整理出直角三角形并正確運用勾股定理是解決此類題目的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側(cè)墻上時,梯子的頂端在B點;當它靠在另一側(cè)墻上時,梯子的頂端在D點.已知∠BAC=60°,∠DAE=45°,點D到地面的垂直距離DE=3
2
米.求點B到地面的垂直距離BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側(cè)的墻上時,梯子的頂端在B點,當它靠在另一側(cè)的墻上時,梯子的頂端在D點,已知∠BAC=60°,∠DAE=45°,點B到地的垂直距離BC=5
3
米,求兩堵墻之間的距離CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側(cè)墻上時,梯子的頂端在B點;當它靠在另一側(cè)墻上時,梯子的頂端在D點.已知∠BAC=60°,∠DAE=45°,當D到地面的垂直距離DE=2
2
m,求點B到地面的垂直距離BC(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側(cè)墻上時,梯子的頂端在B點;當它靠在另一側(cè)墻上時,梯子的頂端在D點.已知∠BAC=60°,∠DAE=45°,點D到地面的垂直距離DE=3
2
m.則點B到地面的垂直距離BC是
3
3
m
3
3
m

查看答案和解析>>

同步練習冊答案