如圖,矩形ABCD中,AB=4,AD=5,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AMNP,直線MN分別與邊BC、CD交于點(diǎn)E、F.

1.判斷BE與ME的數(shù)量關(guān)系,并加以證明;

2.當(dāng)△CEF是等腰三角形時(shí),求線段BE的長;

3.設(shè)x=BE,y=CF·(AB2-BE2),試求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.

 

【答案】

 

1.E=ME,                        1分

∵AB=AM,AE=AE ∴Rt△ABE≌Rt△AME ∴BE=ME     3分

2.BE=                            6分

3.y=-8x2+40x  (0<x≤2)           8分

ymax=48                             9分

【解析】(1)用HL判定法證得Rt△ABE≌Rt△AME,可知BE=ME

      (2)求函數(shù)最大值,要注意自變量的取值范圍

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案