如圖,在梯形ABCD中,ADBC,AB=3,AD=1,CD=4,∠B=50°,∠C=40°,則BC的長為(  )
A.5B.6C.7D.8

延長BA、CD交于E.∵∠B=50°,∠C=40°,
∴∠E=90°,
設AE=x,則ED=
1-x2

∵ADBC,
AE
AB
=
ED
DC

x
3
=
1-x2
4
,
∴x=
3
5
,
又∵
AE
EB
=
AD
BC
,EB=AE+AB=
3
5
+3=
18
5
,AD=1,
3
5
18
5
=
1
BC
,
解得BC=6.
故選B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

(1)如圖,在△ABC中,AB=AC=6,AD是底邊上的高,E為AC中點,則DE=______cm.
(2)若梯形的面積為12cm2,高為3cm,則此梯形的中位線長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,DF⊥AD,交BC于點F.若線段DF上存在點E,使∠EBC=∠EDC,且∠ECB=45°.
(1)猜想:BE與CD有什么數(shù)量關系和位置關系,并說明理由.
(2)若DE=3,DF:FC=4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ABCD,AD=BC,過BC上一點E作直線EH,交CD于點F,交AD的延長線于點H,且EF=FH.
(1)求證:AD=DH+BE.
(2)若AB=10,CD=18,∠ADC=60°,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求cos∠CBD的值;
(2)求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,ADBC,AD=24cm,AB=8cm,BC=26cm,動點P從A點開始沿AD邊向D以1cm/s的速度運動,動點Q從C點開始沿CB邊向B以3cm/s的速度運動.P,Q分別從A,C同時出發(fā),當其中一點到端點時,另一點也隨之停止運動,設運動時間為t(s),t分別為何值時,四邊形PQCD是平行四邊形?等腰梯形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABDC,AB=10cm,CD=4cm,點P從點A出發(fā),以1.5cm/秒的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/秒的速度沿CD向終點D運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止),設P、Q同時出發(fā)并運動了t秒:
(1)當點Q運動到點D時,PQ把梯形分成兩個特殊圖形是______、______;
(2)過點D作DE⊥AB,垂足為E,當四邊形DEPQ是矩形時,求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

以3,5,5,11為邊作梯形,這樣的梯形有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,AB⊥AD,BC=CD,BE⊥CD,垂足為E,點F在BD上,連接AF、EF.
(1)求證:DA=DE;
(2)如果AFCD,求證:四邊形ADEF是菱形.
(3)如果∠C=60°,EC=3,求AB的長.

查看答案和解析>>

同步練習冊答案