在等腰梯形ABCD中,AD∥BC,∠C=60°,AD=CD,E、F分別在AD、CD上,DE=CF,AF、BE交于點(diǎn)P.請你量一量∠BPF的度數(shù),并證明你的結(jié)論.

解:∠BPF=120°,
證明:∵在等腰梯形ABCD中,AD=CD=AB,∠BAE=∠D,DE=CF,
∴AE=DF
∴△ABE≌△DAF(SAS)
∴∠ABE=∠DAF,∠AEB=∠DFA,
∵∠ABC=∠C=60°,
∴∠BAD=∠CDA=120°,
∵∠ABE+∠AEB+∠BAD=180°,
∴∠ABE+∠AEB=60°,
∵∠DAF+∠AEB+∠APE=180°,
∠BPF=∠APE,
∴∠BPF=180°-(∠DAF+∠AEB)
=180°-(∠ABE+∠AEB)
=180°-60°
=120°.
分析:此題利用梯形面積及SAS判定△ABE≌△DAF,再利用角與角之間的關(guān)系得出∠BPF=120°.
點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì)和全等三角形的判定方法等知識(shí)點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長為
7
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點(diǎn)P為BC邊上任意一點(diǎn),且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E為邊BC上一點(diǎn),且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當(dāng)∠B=2∠DCA時(shí),求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點(diǎn),MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過D作DE∥AC交BC的延長線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案