已知:如圖,在△ABC中,AD是BC邊上的中線,∠B=30°,∠C=45°,AC=4.求BC的長(zhǎng)和tan∠ADC的值.

【答案】分析:首先作AE⊥BC,構(gòu)建直角三角形,然后根據(jù)直角三角形特殊角的三角函數(shù),即可推出EC和AE的長(zhǎng)度,再根據(jù)∠B的正切值推出BE的長(zhǎng)度,既而推出BC和C、BD的長(zhǎng)度,便知DE=DC-EC=BC-EC=,根據(jù)正切的定義,即可推出tan∠ADC的值.
解答:解:過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,
∴∠AEC=∠AEB=90°,
在Rt△AEC中,
∵AC=4,
∴cos∠C=,即cos45°=,
∴EC=4×cos45°=2,
又∵∠C=45°,
∴AE=EC=2,
在Rt△AEB中,
tan∠B=,即tan30°=,
∴BE==2,
∴BC=BE+EC=2+2,
∴DE=DC-EC=BC-EC=(2+2)-2=-,
∴tan∠ADC===+1.
點(diǎn)評(píng):本題主要考查解直角三角形、特殊角的三角函數(shù)值,關(guān)鍵在于根據(jù)題意作出輔助線構(gòu)建直角三角形,推出AE,DE的長(zhǎng)度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案