年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 滬科九年級(jí)版 2009-2010學(xué)年 第10期 總第166期 滬科版 題型:044
“地震無情,人有情”,為了挽救受災(zāi)群眾的生命,某地震救援隊(duì)探測(cè)出某建筑物廢墟下方的點(diǎn)
C處有生命跡象.已知廢墟一側(cè)地面上的兩個(gè)探測(cè)點(diǎn)A、B相距3米,探測(cè)線與地面的夾角分別為30°和60°(如圖),你能確定生命所在點(diǎn)C的深度嗎?(提示:如圖,過點(diǎn)C作CD⊥AB交AB的延長線于點(diǎn)D).
方法一:由題意知,∠
ACB=30°.所以△ABC為________三角形.所以BC=AB=3米.在Rt△BDC中,∠CBD=60°,所以CD=BC·________≈2.6(米).所以生命所在點(diǎn)
C的深度約為2.6米.方法二:因?yàn)樘綔y(cè)線與地面的夾角分別為
30°、60°,所以∠CAD=30°,∠CBD=60°.在
Rt△BDC中,tan60°=,所以BD=________=________.在
Rt△ADC中,tan30°=,所以AD=________=________.因?yàn)?/FONT>
AB=AD-BD=3米,所以________-________=3(米).所以
CD=≈2.6(米).所以生命所在點(diǎn)
C的深度約為2.6米.查看答案和解析>>
科目:初中數(shù)學(xué) 來源:浙江省義烏市2010年初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試題 題型:044
如圖1,已知∠ABC=90°,△ABE是等邊三角形,點(diǎn)P為射線BC上任意一點(diǎn)(點(diǎn)P與點(diǎn)B不重合),連結(jié)AP,將線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AQ,連結(jié)QE并延長交射線BC于點(diǎn)F
(1)如圖2,當(dāng)BP=BA時(shí),∠EBF=________°,猜想∠QFC=________°;
(2)如圖1,當(dāng)點(diǎn)P為射線BC上任意一點(diǎn)時(shí),猜想∠QFC的度數(shù),并加以證明;
(3)已知線段AB=,設(shè)BP=x,點(diǎn)Q到射線BC的距離為y,求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將三角形紙片△ABC按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF。已知AB=AC=8,BC=10,若以點(diǎn)B′,F,C為頂點(diǎn)的三角形與△ABC相似,那么BF的長度是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市白下區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題
問題:已知線段AB、CD相交于點(diǎn)O,AB=CD.連接AD、BC,請(qǐng)?zhí)砑右粋(gè)條件,使得△AOD≌△COB.
小明的做法及思路
小明添加了條件:∠DAB=∠BCD.他的思路是:分兩種情況畫圖①、圖②,在兩幅圖中,
都作直線DA、BC,兩直線交于點(diǎn)E.
由∠DAB=∠BCD,可得∠EAB=∠ECD.
∵AB=CD,∠E=∠E,
∴△EAB≌△ECD.∴EB=ED,EA=EC.
圖①中ED-EA=EB-EC,即AD=CB.
圖②中EA-ED=EC-EB,即AD=CB.
又∵∠DAB=∠BCD,∠AOD=∠COB,
∴△AOD≌△COB.
數(shù)學(xué)老師的觀點(diǎn):
(1)數(shù)學(xué)老師說:小明添加的條件是錯(cuò)誤的,請(qǐng)你給出解釋.
你的想法:
(2)請(qǐng)你重新添加一個(gè)滿足問題要求的條件
,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com