在平面直角坐標(biāo)系xOy中,關(guān)于y軸對(duì)稱的拋物線y=-
m-13
x2+(m-2)x+4m-7與x軸交于A、B 兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,P是這條拋物線上的一點(diǎn)(點(diǎn)P不在坐標(biāo)軸上),且點(diǎn)P關(guān)于直線BC的對(duì)稱點(diǎn)在x軸上,D(0,3)是y軸上的一點(diǎn).
(1)求拋物線的解析式及點(diǎn)P的坐標(biāo);
(2)若E、F是 y 軸負(fù)半軸上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E在點(diǎn)F的上面),且EF=2,當(dāng)四邊形PBEF的周長(zhǎng)最小時(shí),求點(diǎn)E、F的坐標(biāo);
(3)若Q是線段AC上一點(diǎn),且S△COQ=2S△AOQ,M是直線DQ上的一個(gè)動(dòng)點(diǎn),在x軸上方的平面內(nèi)存在一點(diǎn)N,使得以 O、D、M、N為頂點(diǎn)的四邊形是菱形,請(qǐng)你直接寫出點(diǎn)N的坐標(biāo)
精英家教網(wǎng)
分析:(1)本題需先根據(jù)已知條件求出拋物線的解析式,再根據(jù)A、B兩點(diǎn)求出∠OBC的度數(shù)和∠OBD的度數(shù),再證出直線BD與x軸關(guān)于直線BC對(duì)稱,再設(shè)直線BD的解析式為y=kx+b,再把各點(diǎn)代入,最后求出結(jié)果即可.
(2)本題可先過點(diǎn)P作PG⊥x軸于G,在PG上截取PH=2,證出四邊形PHEF為平行四邊形得出HE=PF,再根據(jù)已有的條件證出Rt△AOE∽R(shí)t△AGH,最后即可求出點(diǎn)E、F的坐標(biāo).
(3)本題根據(jù)已有的條件,再結(jié)合圖形,可以直接寫出點(diǎn)N的坐標(biāo).
解答:解:(1)∵拋物線y=-
m-1
3
x2
+(m-2)x+4m-7關(guān)于y軸對(duì)稱,
∴m-2=0.
∴m=2.
∴拋物線的解析式是y=-
1
3
x2
+1
令y=0,得x=±
3

∴A(-
3
,0),B(
3
,0)
在Rt△BOC中,OC=1,OB=
3
,可得∠OBC=30°.
在Rt△BOD中,OD=3,OB=
3
,可得∠OBD=60°.
∴BC是∠OBD的角平分線.
∴直線BD與x軸關(guān)于直線BC對(duì)稱.
因?yàn)辄c(diǎn)P關(guān)于直線BC的對(duì)稱點(diǎn)在x軸上,
則符合條件的點(diǎn)P就是直線BD與拋物線y=-
1
3
x2
+1的交點(diǎn).
設(shè)直線BD的解析式為y=kx+b.
3
k+b=0
b=3
,
k=-
3
b=3

∴直線BD的解析式為y=-
3
x+3

∵點(diǎn)P在直線BD上,設(shè)P點(diǎn)坐標(biāo)為(x,-
3
x+3)

又因?yàn)辄c(diǎn)P在拋物線y=-
1
3
x2
+1上,
-
3
x+3
=-
1
3
x2
+1
x1=
3
,x2=2
3

∴y1=0,y2=-3
∴點(diǎn)P的坐標(biāo)是(2
3
,-3)


(2)過點(diǎn)P作PG⊥x軸于G,在PG上截取PH=2,連接AH與y軸交于點(diǎn)E,在y軸的負(fù)半軸上截取EF=2.
精英家教網(wǎng)
∵PH∥EF,PH=EF,
∴四邊形PHEF為平行四邊形,有HE=PF.
又∵PB、EF的長(zhǎng)為定值,
∴此時(shí)得到的點(diǎn)E、F使四邊形PBEF的周長(zhǎng)最。
∵OE∥GH,
∴Rt△AOE∽R(shí)t△AGH.
OE
GH
=
AO
AG

∴OE=
3
3
3
=
1
3

∴OF=OE+EF=
1
3
+2=
7
3

∴點(diǎn)E的坐標(biāo)為(0,-
1
3
),點(diǎn)F的坐標(biāo)為(0,-
7
3
).

(3)點(diǎn)N的坐標(biāo)是N1(
3
8
3
,
3
2
)或N2(
3
19
57
12
19
19
)或N3(-
24
19
3
,
18
19
)
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)的求法等知識(shí)點(diǎn).主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案