如圖,將△ABC繞著點C順時針旋轉50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是( )

A.110°
B.80°
C.40°
D.30°
【答案】分析:首先根據(jù)旋轉的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形內(nèi)角和可得∠A′CB′的度數(shù),進而得到∠ACB的度數(shù),再由條件將△ABC繞著點C順時針旋轉50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度數(shù).
解答:解:根據(jù)旋轉的性質(zhì)可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°-110°-40°=30°,
∴∠ACB=30°,
∵將△ABC繞著點C順時針旋轉50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°,
故選:B.
點評:此題主要考查了旋轉的性質(zhì),關鍵是熟練掌握旋轉前、后的圖形全等,進而可得到一些對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

4、如圖,將△ABC繞著點C按順時針方向旋轉20°,B點落在B′位置,A點落在A′位置,若AC⊥A′B′,則∠BAC的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,將△ABC繞著頂點A順時針旋轉60°后得到△ADF,這時點F落在BC的中點上.試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•汕頭)如圖,將△ABC繞著點C順時針旋轉50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將△ABC繞著點C按順時針方向旋轉20°,B點落在B'位置,A點落在A'位置,若AC⊥A'B',則∠BAC的度數(shù)是
70°
70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將△ABC繞著C點順時針旋轉到△A'B'C'的位置,若∠BCB′=28°,那么∠ACA′=
28°
28°

查看答案和解析>>

同步練習冊答案