已知拋物線L:y=ax2+bx+c(其中a、b、c均不為0)的頂點為P,與y軸的交點是M.我們稱以M為頂點,且過點P的拋物線為拋物線L的“伴隨拋物線”,直線PM為L的“伴隨直線”.
(1)請直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的解析式:伴隨拋物線的解析式______,伴隨直線的解析式______;
(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3,則這條拋物線的解析式是______;
(3)求拋物線y=ax2+bx+c(其中a、b、c均不為0)的伴隨拋物線和伴隨直線的解析式.
【答案】
分析:(1)先求出已知拋物線的頂點P的坐標和與y軸的交點M的坐標,然后設伴隨拋物線的頂點式解析式,再把點P的坐標代入求解即可;利用待定系數(shù)法求一次函數(shù)解析式求伴隨直線解析式;
(2)求出伴隨拋物線的頂點坐標,即點M的坐標,再聯(lián)立伴隨拋物線與伴隨直線求出點P的坐標,然后設拋物線的頂點式解析式,把點M代入求解即可;
(3)根據(jù)二次函數(shù)的一般形式寫出頂點P的坐標,與y軸的交點M的坐標,再根據(jù)伴隨拋物線的定義設出拋物線的頂點式解析式,把點P的坐標代入求解即可得到伴隨拋物線解析式;再利用待定系數(shù)法求一次函數(shù)解析式求伴隨直線的解析式即可.
解答:解:(1)∵y=2x
2-4x+1=2(x
2-1)-1,
∴頂點坐標為P(1,-1),
令x=0,則y=1,
所以,點M(0,1),
∴伴隨拋物線的頂點是(0,1),經(jīng)過點(1,-1),
設伴隨拋物線的解析式為y=ax
2+1,
則a+1=-1,
解得a=-2,
所以,伴隨拋物線的解析式為y=-2x
2+1,
設伴隨直線為y=kx+b,
則
,
解得
,
所以,伴隨直線解析式為y=-2x+1;
(2)y=-x
2-3的頂點坐標為(0,-3),
所以,點M(0,-3),
聯(lián)立
,
解得
(為點M),
,
所以,點P(1,-4),
設拋物線解析式為y=a(x-1)
2-4,
則a(0-1)
2-4=-3,
解得a=1,
所以,拋物線解析式為y=(x-1)
2-4=x
2-2x-3,
即拋物線解析式為y=x
2-2x-3;
故答案為:(1)y=-2x
2+1,y=-2x+1;(2)y=x
2-2x-3;
(3)拋物線y=ax
2+bx+c的頂點P的坐標為(-
,
),點M的坐標為(0,c),
設伴隨拋物線解析式為y=mx
2+c,
則-
m+c=
,
解得m=
,
所以,伴隨拋物線解析式為y=
x
2+c,
設伴隨直線解析式為y=ex+f,
則
,
解得
,
所以,伴隨直線的解析式為y=
x+c.
點評:本題是對二次函數(shù)的綜合考查,主要利用了待定系數(shù)法求二次函數(shù)解析式,待定系數(shù)法求一次函數(shù)解析式,讀懂題目信息,理解伴隨拋物線的定義,伴隨直線的定義是解題的關鍵.