如圖,已知:在等腰梯形ABCD中,AB∥CD,AC⊥BC,DG⊥AC,過B作EB⊥AB,交AC的延長線于E.
(1)求證:AD2=AC•CE;
(2)當(dāng)BE=CD時,求證:△DCG≌△EBC.

證明:(1)∵等腰梯形ABCD,AB∥CD,
∴∠DCA=∠CAB.
∵AC⊥BC,EB⊥AB,
∴∠EBC=∠CAB,∠CEB=∠CBA.
∴△ACB∽△BCE.

即BC2=AC•CE.
∵等腰梯形ABCD,
∴AD=BC.
∴AD2=AC•CE;

(2)∵由(1)知∠EBC=∠BCG=∠CAB,
∵BE=CD,∠BCE=∠CGD,
∴△DCG≌△EBC.
分析:(1)因?yàn)榈妊菪蜛BCD,AB∥CD,所以∠DCA=∠CAB,又因?yàn)锳C⊥BC,EB⊥AB,所以∠EBC=∠CAB,所以△ACB∽△BCE,得,即BC2=AC•CE,又AD=BC,所以AD2=AC•CE
(2)由(1)可知∠EBC=∠BCG=∠CAB,又BE=CD,∠BCE=∠CGD,所以△DCG≌△EBC
點(diǎn)評:本題中(1)主要考查了相似三角形的判定和等腰梯形的性質(zhì),(2)考查了全等三角形的判定
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點(diǎn)P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點(diǎn)勻速運(yùn)動,到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個單位長度的速度向點(diǎn)B勻速運(yùn)動.當(dāng)Q到達(dá)B時,P、Q兩點(diǎn)同時停止

運(yùn)動,設(shè)P、Q運(yùn)動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動的過程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過原點(diǎn)O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點(diǎn)P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點(diǎn)勻速運(yùn)動,到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個單位長度的速度向點(diǎn)B勻速運(yùn)動.當(dāng)Q到達(dá)B時,P、Q兩點(diǎn)同時停止

運(yùn)動,設(shè)P、Q運(yùn)動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動的過程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過原點(diǎn)O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習(xí)冊答案