【題目】七(1)班同學(xué)為了解某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)整理如下表(部分):
月均用 水量x/m3 | 0< x≤5 | 5< x≤10 | 10< x≤15 | 15< x≤20 | x>20 |
頻數(shù)/戶數(shù) | 12 | 20 | 3 | ||
百分比 | 12% | 7% |
若該小區(qū)有800戶家庭,據(jù)此估計(jì)該小區(qū)月均用水量不超過10 m3的家庭有________戶.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)圖1是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線剪開分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.
圖2的陰影部分的正方形的邊長(zhǎng)是______.
用兩種不同的方法求圖中陰影部分的面積.
(方法1)= ____________;
(方法2)= ____________;
(3) 觀察圖2,寫出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系;
根據(jù)題中的等量關(guān)系,解決問題:若m+n=10,m-n=6,求mn的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從點(diǎn)A開始按A→B→C→D的方向運(yùn)動(dòng)到點(diǎn)D.如圖,設(shè)動(dòng)點(diǎn)P所經(jīng)過的路程為x,△APD的面積為y.(當(dāng)點(diǎn)P與點(diǎn)A或D重合時(shí),y=0)
(1)寫出y與x之間的函數(shù)解析式;
(2)畫出此函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將四邊形ABCD稱為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫出“基本圖形”關(guān)于原點(diǎn)O對(duì)稱的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標(biāo);
②畫出“基本圖形”繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°所成的四邊形A2B2C2D2
A1( , )B1( , )
C1( , )D1( , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,將腰CD以點(diǎn)D為中心逆時(shí)針旋轉(zhuǎn)90°至ED,連結(jié)AE,CE,則△ADE的面積是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將含30°角的直角三角尺ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( )
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購(gòu)置一批電子白板和一批筆記本電腦,經(jīng)投標(biāo),購(gòu)買1塊電子白板比買3臺(tái)筆記本電腦多3000元,購(gòu)買4塊電子白板和5臺(tái)筆記本電腦共需80000元.
(1)求購(gòu)買1塊電子白板和一臺(tái)筆記本電腦各需多少元?
(2)根據(jù)該校實(shí)際情況,需購(gòu)買電子白板和筆記本電腦的總數(shù)為396,要求購(gòu)買的總費(fèi)用不超過2700000元,并購(gòu)買筆記本電腦的臺(tái)數(shù)不超過購(gòu)買電子白板數(shù)量的3倍,該校有哪幾種購(gòu)買方案?
(3)上面的哪種購(gòu)買方案最省錢?按最省錢方案購(gòu)買需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD對(duì)折,得折痕PQ,展開后再沿MN翻折,使點(diǎn)C恰好落在折痕PQ上的點(diǎn)C′處,點(diǎn)D落在D′處,其中M是BC的中點(diǎn)且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com