【題目】如圖,已知點A是反比例函數(shù)的圖象上的一個動點,連接OA,若將線段OA繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達(dá)式為________.
【答案】
【解析】
設(shè)A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,易證△ACO≌△ODB,即可求得AC=OD=n,CO=BD=-m,由此可得點B的坐標(biāo),從而求得點B所在圖象的函數(shù)表達(dá)式.
∵點A是反比例函數(shù)的圖象上的一個動點,
設(shè)A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,
∴AC=n,OC=-m,
∴∠ACO=∠ADO=90°,
∵∠AOB=90°,
∴∠CAO+∠AOC=∠AOC+∠BOD=90°,
∴∠CAO=∠BOD,
在△ACO與△ODB中, ,
∴△ACO≌△ODB,
∴AC=OD=n,CO=BD=-m,
∴B(n,-m),
∵mn=-2,
∴n(-m)=2,
∴點B所在圖象的函數(shù)表達(dá)式為,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點C落在點C'處,若∠ADB=46°,則∠DBE的度數(shù)為______.
(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9.
(畫一畫)
如圖2,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);
(算一算)
如圖3,點F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點A,B分別落在點A',B'處,若AG=,求B'D的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形ABCD中,AB=a,BC=2a,點P在邊BA上,點Q在邊CD上,且BP=m,CQ=n,其中,m<a,n<a,m≠n,在長方形ABCD中,分別以BP、CQ為邊作正方形BPP1P2,正方形CQQ1Q2(點P2、Q2在邊BC上).
(1)畫出圖形.
(2)當(dāng)m<n時,求三角形PQ1C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB⊥AC,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)一個角度α(0°<α≤90°),分別交線段BC,AD于點E,F,連接BF.
(1)如圖1,在旋轉(zhuǎn)的過程中,求證:OE=OF;
(2)如圖2,當(dāng)旋轉(zhuǎn)至90°時,判斷四邊形ABEF的形狀,并證明你的結(jié)論;
(3)若AB=1,BC=,且BF=DF,求旋轉(zhuǎn)角度α的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”假日期間,某網(wǎng)店為了促銷,設(shè)計了一種抽獎送積分活動,在該網(wǎng)店網(wǎng)頁上顯示如圖所示的圓形轉(zhuǎn)盤,轉(zhuǎn)盤被均等的分成四份,四個扇形上分別標(biāo)有“謝謝惠顧”、“10分”、“20分”、“40分”字樣.參與抽獎的顧客只需用鼠標(biāo)點擊轉(zhuǎn)盤,指針就會在轉(zhuǎn)動的過程中隨機的停在某個扇形區(qū)域,指針指向扇形上的積分就是顧客獲得的獎勵積分,凡是在活動期間下單的顧客,均可獲得兩次抽獎機會,求兩次抽獎顧客獲得的總積分不低于30分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費方案.
甲公司方案:每月的養(yǎng)護(hù)費用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在多項式中,表示這個多項式的項數(shù),表示這個多項式中三次項的系數(shù).在數(shù)軸上點與點所表示的數(shù)恰好可以用與分別表示.有一個動點從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為秒.
(1)________,___________,線段_________個單位長度;
(2)點所表示數(shù)是________(用含的多項式表示);
(3)求當(dāng)為多少時,線段的長度恰好是線段長度的三倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)與一次函數(shù)y=x+b的圖象在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩個函數(shù)的表達(dá)式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標(biāo),并根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com