【題目】已知點(diǎn)O是等腰直角三角形ABC斜邊上的中點(diǎn),AB=BC,E是AC上一點(diǎn),連結(jié)EB.
(1) 如圖1,若點(diǎn)E在線段AC上,過(guò)點(diǎn)A作AM⊥BE,垂足為M,交BO于點(diǎn)F.求證:OE=OF;
(2)如圖2,若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交OB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
【答案】見(jiàn)解析
【解析】試題分析:(1)由三角形ABC是等腰直角三角形,AB=BC,得到∠BAC=∠ACB=45°,又由點(diǎn)O是AC邊上的中點(diǎn),得到∠BOE=∠AOF=90°,∠ABO=∠CBO=45°,從而得到∠BAC=∠ABO,OB=OA,又由AM⊥BE,得到∠MEA+∠MAE=90°=∠AFO+∠MAE,
故有∠MEA=∠AFO,得到Rt△BOE≌Rt△AOF,從而得到結(jié)論;
(2)同(1)可證明Rt△BOE≌Rt△AOF,從而得到OE=OF.
試題解析:(1)證明:∵三角形ABC是等腰直角三角形,AB=BC,
∴∠BAC=∠ACB=45°
又點(diǎn)O是AC邊上的中點(diǎn),
∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°
∴∠BAC=∠ABO,∴OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO,
∴Rt△BOE≌Rt△AOF,∴OE=OF;
(2)OE=OF成立;
證明:∵三角形ABC是等腰直角三角形,AB=BC,
∴∠BAC=∠ACB=45°
又點(diǎn)O是AC邊上的中點(diǎn),
∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°
∴∠BAC=∠ABO,∴OB=OA,
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠B+∠OBE,
又∵∠MBF=∠OBE,∴∠F=∠E,
∴Rt△BOE≌Rt△AOF,
∴OE=OF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一漁船由西往東航行,在點(diǎn)測(cè)得海島位于北偏東的方向,前進(jìn)海里到達(dá)點(diǎn),此時(shí),測(cè)得海島位于北偏東的方向,則海島到航線的距離等于________海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,AE是過(guò)A點(diǎn)的一條直線,且B,C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E.
(1)△ABD與△CAE全等嗎?BD與DE+CE相等嗎?請(qǐng)說(shuō)明理由。
(2)如圖2,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖②所示的位置(BD<CE)時(shí),其余條件不變,則BD與DE、CE的關(guān)系如何?請(qǐng)說(shuō)明理由
(3)如圖3,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖③所示的位置(BD>CE)時(shí),其余條件不變,則BD與DE、CE的關(guān)系如何?
(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD與DE、CE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一枚棋子放在七角棋盤的第0號(hào)角,現(xiàn)依逆時(shí)針?lè)较蛞苿?dòng)這枚棋子,其各步依次移動(dòng)1,2,3,…,n個(gè)角,如第一步從0號(hào)角移動(dòng)到第1號(hào)角,第二步從第1號(hào)角移動(dòng)到第3號(hào)角,第三步從第3號(hào)角移動(dòng)到第6號(hào)角,….若這枚棋子不停地移動(dòng)下去,則這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的中,,且為上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得與全等,以下是甲、乙兩人的作法:
(甲)連接,作的中垂線分別交、于點(diǎn)、點(diǎn),則、兩點(diǎn)即為所求
(乙)過(guò)作與平行的直線交于點(diǎn),過(guò)作與平行的直線交于點(diǎn),則、兩點(diǎn)即為所求
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。
A. 兩人皆正確B. 兩人皆錯(cuò)誤
C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).
(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;
(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖②說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ECD都是等邊三角形,B、C、D三點(diǎn)在一條直線上,AD與BE相交于點(diǎn)O,AD與CE相交于點(diǎn)F,AC與BE相交于點(diǎn)G.
(1)△BCE與△ACD全等嗎?請(qǐng)說(shuō)明理由.
(2)求∠BOD度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com