【題目】如圖,正方形ABCD的邊長為3,E,F 分別是AB,BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM;
(2)當AE=1時,求EF的長.
【答案】(1)證明見解析(2)
【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)可知,DE=DM,∠EDM=90°,因為∠EDF=45°,所以∠FDM=∠EDM=45°,通過證明△DEF≌△DMF得到EF=MF;
(2)設(shè)EF=MF=x,則BF=4-x,BE=2,在Rt△EBF中,由勾股定理得到關(guān)于x的等式,解得x的值即可.
試題解析:(1)證明:∵△DAE逆時針旋轉(zhuǎn)90°得到△DCM,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDM=45°,
在△DEF和△DMF中,
DE=DM,∠EDF=∠MDF,DF=DF,
∴△DEF≌△DMF(SAS),
∴EF=MF;
(2)設(shè)EF=MF=x, ∵AE=CM=1,且BC=3,
∴BM=BC+CM=3+1=4,
∴BF=BM-MF=BM-EF=4-x,
∵EB=AB-AE=3-1=2,
在Rt△EBF中,由勾股定理得EB+BF=EF, 即2+(4-x)=x,
解得:x=, 則EF=.
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,AB=BC=8cm,∠ABC=90°,點E以每秒1cm/s的速度由A向點B運動,ED⊥AC于點D,點M為EC的中點.
(1)求證:△BMD為等腰直角三角形;
(2)當點E運動多少秒時,△BMD的面積為12.5cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.兩個數(shù)的差一定小于被減數(shù)
B.若兩數(shù)的差為0,則這兩數(shù)必相等
C.兩個相反數(shù)相減必為0
D.若兩數(shù)的差為正數(shù),則此兩數(shù)都是正數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 為的直徑,點為上一點,若∠BAC=∠CAM,過點作直線垂直于射線AM,垂足為點D.
(1)試判斷與的位置關(guān)系,并說明理由;
(2)若直線與的延長線相交于點, 的半徑為3,并且.求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時間x(小時)的函數(shù)關(guān)系的圖象.下列說法錯誤的是( )
A. 乙先出發(fā)的時間為0.5小時 B. 甲的速度是80千米/小時
C. 甲出發(fā)0.75小時后兩車相遇 D. 甲到B地比乙到A地遲5分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.
(1)求m、k、b的值;
(2)連接OA、OB,計算三角形OAB的面積;
(3)結(jié)合圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四包真空小包裝火腿,每包以標準克數(shù)(450克)為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù),以下數(shù)據(jù)是記錄結(jié)果,其中表示實際克數(shù)最接近標準克數(shù)的是( )
A.+2
B.-3
C.+3
D.+4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com