如圖,拋物線y=x2﹣2x+c的頂點(diǎn)A在直線l:y=x﹣5上.
(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C.D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀;
(3)是否存在一點(diǎn)P,使以點(diǎn)P、A.B.D為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(1)A(1,﹣4);(2)△ABD是直角三角形;
(3)存在,P(﹣2,﹣7),P(4,﹣1),P(2.1)
解析試題分析:(1)先根據(jù)拋物線的解析式得出其對(duì)稱軸方程,由此得到頂點(diǎn)A的橫坐標(biāo),然后代入直線l的解析式中即可求出點(diǎn)A的坐標(biāo).
(2)由A點(diǎn)坐標(biāo)可確定拋物線的解析式,進(jìn)而可得到點(diǎn)B的坐標(biāo).則AB、AD、BD三邊的長(zhǎng)可得,然后根據(jù)邊長(zhǎng)確定三角形的形狀.
(3)若以點(diǎn)P、A、B、D為頂點(diǎn)的四邊形是平行四邊形,應(yīng)分①AB為對(duì)角線、②AD為對(duì)角線兩種情況討論,然后結(jié)合勾股定理以及邊長(zhǎng)的等量關(guān)系列方程求出P點(diǎn)的坐標(biāo).
(1)∵頂點(diǎn)A的橫坐標(biāo)為,且頂點(diǎn)在y=x﹣5上,
∴當(dāng)x=1時(shí),y=1-5=-4,
∴A(1,-4).
(2)將A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,c=-3,
∴y=x2-2x-3,
∴B(0,-3)
當(dāng)y=0時(shí),x2-2x-3=0,x1=-1,x2=3
∴C(-1,0),D(3,0),
∵BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,
∴BD2+AB2=AD2,
∴∠ABD=90°,即△ABD是直角三角形.
(3)由題意知:直線y=x-5交y軸于點(diǎn)E(0,-5),交x軸于點(diǎn)F(5,0)
∴OE=OF=5,
又∵OB=OD=3
∴△OEF與△OBD都是等腰直角三角形
∴BD∥l,即PA∥BD
則構(gòu)成平行四邊形只能是PADB或PABD,如圖,
過點(diǎn)P作y軸的垂線,過點(diǎn)A作x軸的垂線交過P且平行于x軸的直線于點(diǎn)G.
設(shè)P(x1,x1-5),則G(1,x1-5)
則PG=|1-x1|,AG=|5-x1-4|=|1-x1|
PA=BD=3
由勾股定理得:
(1-x1)2+(1-x1)2=18,x12-2x1-8=0,x1=-2或4
∴P(-2,-7)或P(4,-1),
存在點(diǎn)P(-2,-7)或P(4,-1)使以點(diǎn)A、B、D、P為頂點(diǎn)的四邊形是平行四邊形.
考點(diǎn):本題考查了二次函數(shù)解析式的確定、勾股定理、平行四邊形的判定
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握勾股定理及其逆定理,在復(fù)雜的圖形中找出基本的圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com